@article{AIHPB_2000__36_6_787_0, author = {Fontes, Luiz Renato G. and Jord\~ao Neves, Eduardo and Sidoravicius, Vladas}, title = {Limit velocity for a driven particle in a random medium with mass aggregation}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {787--805}, publisher = {Gauthier-Villars}, volume = {36}, number = {6}, year = {2000}, mrnumber = {1797394}, zbl = {0971.60100}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_2000__36_6_787_0/} }
TY - JOUR AU - Fontes, Luiz Renato G. AU - Jordão Neves, Eduardo AU - Sidoravicius, Vladas TI - Limit velocity for a driven particle in a random medium with mass aggregation JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2000 SP - 787 EP - 805 VL - 36 IS - 6 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_2000__36_6_787_0/ LA - en ID - AIHPB_2000__36_6_787_0 ER -
%0 Journal Article %A Fontes, Luiz Renato G. %A Jordão Neves, Eduardo %A Sidoravicius, Vladas %T Limit velocity for a driven particle in a random medium with mass aggregation %J Annales de l'I.H.P. Probabilités et statistiques %D 2000 %P 787-805 %V 36 %N 6 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPB_2000__36_6_787_0/ %G en %F AIHPB_2000__36_6_787_0
Fontes, Luiz Renato G.; Jordão Neves, Eduardo; Sidoravicius, Vladas. Limit velocity for a driven particle in a random medium with mass aggregation. Annales de l'I.H.P. Probabilités et statistiques, Volume 36 (2000) no. 6, pp. 787-805. http://archive.numdam.org/item/AIHPB_2000__36_6_787_0/
[1] Statistics of mass aggregation in a self-gravitating one-dimensional gas, J. Statist. Phys. 91 (1998) 177-197. | Zbl
, , , ,[2] The dynamics of a particle interacting with a semi-infinite ideal gas is a Bernoulli flow, in: J. Fritz, A. Jaffe, D. Szasz (Eds.), Statistical Physics and Dynamical Systems: Rigorous Results, Progress in Physics, Vol. 10, Birkhäuser, Basel, 1985. | MR | Zbl
, , , ,[3] Ergodic properties of a semi-infinite one-dimensional system of statistical mechanics, Comm. Math. Phys. 101 (1985) 363-382. | MR
, , , , ,[4] Drift and diffusion for a mechanical system, Probab. Theory Related Fields 103 (1985) 349-379. | MR | Zbl
, ,[5] Generalized variational principles, global weak solutions and behaviour with random initial data for systems of conservation laws arising in adhesion particle systems, Comm. Math. Phys. 177 (1996) 349-380. | MR | Zbl
, , ,[6] Elastic collisions of particles on the line, Russian Math. Surveys (Uspekhi Mat. Nauk) 33 (1978) 211-212. | MR | Zbl
,[7] States of classical statistical mechanics of infinitely many particles, Arch. Rational Mech. Anal. 59 (1975) 219. | MR
,[8] One-dimensional ballistic aggregation: rigorous long-time estimates, J. Statist. Phys. 76 (1994) 447-476.
, ,[9] Aggregation dynamics in a self-gravitating one-dimensional gas, J. Statist. Phys. 84 (1995) 837-857. | MR | Zbl
, ,[10] Stationary state and diffusion for a charged particle in one-dimensional medium with lifetimes, SIAM Theory Probab. Appl. , to appear. | MR | Zbl
, , (1999)[11] Hyperbolicity and Moller morphism for a model of classical statistical mechanics, in: J. Fritz, A. Jaffe, D. Szasz (Eds.), Statistical Physics and Dynamical Systems: Rigorous Results, Progress in Physics, Vol. 10, Birkhäuser, Basel, 1985. | MR | Zbl
, , ,[12] On the forced motion of a heavy particle in a random medium I. Existence of dynamics, Markov Proc. Related Fields 4 (???) 629-649. | MR | Zbl
, , ,[13] Mixing properties for the mechanical motion of a charged particle in a random medium, CARR-Report 8/98, 1998.
, , ,[14] Billiard trajectories in a polyhedral angle, Russian Math. Surveys 33 ( 1978) 219-220. | MR | Zbl
,[15] One-dimensional classical massive particle in the ideal gas, Comm. Math. Phys. 104 (1986) 423-443. | MR | Zbl
, ,[16] Conservative dynamical systems in a polyhedral angle. Existence of dynamics, Nonlinearity 8367 (1995) 378. | MR | Zbl
,[17] Burgers'equation, devil's staircases and the mass distribution function for large-scale structures, Astronom. and Astrophys. 2889 (1994) 325-356.
, , , ,[18] Gravitational instability: an approximate theory for large density perturbations, Astronom. and Astrophys. 5 (1970) 84-89.
,[19] On systems of particles with finite range and/or repulsive interactions, Comm. Math. Phys. 69 (1979) 31-56.
,