Free diffusions, free entropy and free Fisher information
Annales de l'I.H.P. Probabilités et statistiques, Volume 37 (2001) no. 5, pp. 581-606.
@article{AIHPB_2001__37_5_581_0,
     author = {Biane, Philippe and Speicher, Roland},
     title = {Free diffusions, free entropy and free {Fisher} information},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {581--606},
     publisher = {Elsevier},
     volume = {37},
     number = {5},
     year = {2001},
     mrnumber = {1851716},
     zbl = {1020.46018},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPB_2001__37_5_581_0/}
}
TY  - JOUR
AU  - Biane, Philippe
AU  - Speicher, Roland
TI  - Free diffusions, free entropy and free Fisher information
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2001
SP  - 581
EP  - 606
VL  - 37
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/item/AIHPB_2001__37_5_581_0/
LA  - en
ID  - AIHPB_2001__37_5_581_0
ER  - 
%0 Journal Article
%A Biane, Philippe
%A Speicher, Roland
%T Free diffusions, free entropy and free Fisher information
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2001
%P 581-606
%V 37
%N 5
%I Elsevier
%U http://archive.numdam.org/item/AIHPB_2001__37_5_581_0/
%G en
%F AIHPB_2001__37_5_581_0
Biane, Philippe; Speicher, Roland. Free diffusions, free entropy and free Fisher information. Annales de l'I.H.P. Probabilités et statistiques, Volume 37 (2001) no. 5, pp. 581-606. http://archive.numdam.org/item/AIHPB_2001__37_5_581_0/

[1] P Biane, Free brownian motion, free stochastic calculus and random matrices, in: Voiculescu D.V (Ed.), Free Probability Theory, Fields Institute Communications, 12, 1997, pp. 1-20. | MR | Zbl

[2] P Biane, On the free convolution with a semi-circular distribution, Indiana University Math. J. 46 (1997) 705-717. | MR | Zbl

[3] P Biane, Free probability for probabilists, MSRI Preprint 40 (1998). | MR

[4] P Biane, Processes with free increments, Math. Zeit. 227 (1998) 143-174. | MR | Zbl

[5] P Biane, R Speicher, Stochastic calculus with respect to free brownian motion and analysis on Wigner space, Probab. Theory Related Fields 112 (1998) 373-409. | MR | Zbl

[6] M Douglas, Stochastic master fields, Phys. Lett. B 344 (1995) 117-126. | MR

[7] M Douglas, Large N quantum field theory and matrix models, in: Voiculescu D.V (Ed.), Free Probability Theory, Fields Institute Communications, 12, 1997, pp. 21-40. | MR | Zbl

[8] F.J Dyson, A brownian motion model for the eigenvalues of a random matrix, J. Math. Phys. 3 (1962) 1191-1198. | MR | Zbl

[9] M.I Freidlin, A.D Wentzell, Random Perturbations of Dynamical Systems, Grundlehren der Mathematischen Wissenschaften, 260, Springer-Verlag, New York, 1998. | MR | Zbl

[10] M Fukushima, Y Oshima, M Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter Studies in Mathematics, 19, Walter de Gruyter, Berlin, 1994. | MR | Zbl

[11] R Gopakumar, D.J Gross, Mastering the master field, Nucl. Phys. B 451 (1995) 379-415. | MR | Zbl

[12] J Greensite, M.B Halpern, Quenched master fields, Nucl. Phys. 211 (1988) 343-368.

[13] V.V Peller, Hankel operators in the perturbation theory of unitary and self-adjoint operators, Funct. Anal. Appl. 19 (1985) 111-123. | MR | Zbl

[14] R Speicher, Combinatorial Theory of the Free Product with Amalgamation and Operator-Valued Free Probability Theory, Mem. Amer. Math. Soc., 627, Amer. Math. Soc, Providence, RI, 1998. | MR | Zbl

[15] D.W Stroock, Logarithmic Sobolev inequalities for Gibbs states, in: Dell'Antonio G, Mosco U (Eds.), Dirichlet Forms, Lectures given at the First C.I.M.E., Session held in Varenna, June 8-19, Lecture Notes in Mathematics, 1563, Springer-Verlag, Berlin, 1993, pp. 194-228. | MR | Zbl

[16] E.B Saff, V Totik, Logarithmic Potentials with External Fields, Grundlehren der Mathematischen Wissenschaften, 316, Springer-Verlag, Berlin, 1997. | MR | Zbl

[17] D.V Voiculescu, Limit laws for random matrices and free products, Invent. Math. 104 (1991) 201-220. | MR | Zbl

[18] D.V Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory. I, Comm. Math. Phys. 155 (1993) 71-92. | MR | Zbl

[19] D.V Voiculescu, The derivative of order 1/2 of a free convolution by a free semi-circular distribution, Indiana University Math. J. 46 (1997) 697-703. | MR | Zbl

[20] D.V Voiculescu, Lectures on Free Probability Theory, Saint Flour Summer School, Lecture Notes in Mathematics, Springer, Berlin, 1999. | Zbl

[21] D.V Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory. V: noncommutative Hilbert transform, Invent. Math. 132 (1998) 189-227. | MR | Zbl

[22] D.V Voiculescu, K Dykema, A Nica, Free Random Variables, CRM Monograph Series No. 1, Amer. Math. Soc, Providence, RI, 1992. | MR | Zbl