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ABSTRACT. — For f:[0,1] —> R, we considerLtf, the local time of space-time Brownian
motion on the curvef. Let S, be the class of all functions whose Holder norm of ordés
less than or equal to 1. We show that the supremum{oﬁverf in Sy is finite if « > 1/2 and
infinite if @ < 1/2. 0 2001 Editions scientifiques et médicales Elsevier SAS
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RESUME. — Soit W, un mouvement brownien et sd.t[f le temps local du processys W;)
pour la courbef :[0,1] — R, c'est & dire,L,f =lim,_o 2—18 fé Lts)—e, fs)+e[(Wy) ds. Soit S,
la classe des fonctions dont la norme holdérienne d’'un erdrgt inférieure ou égale a 1. Nous
démontrons que sypg, L{ < 00 p.S. Sie > 1/2 et que ce supremum est infini p.sask 1/2.
0 2001 Editions scientifiques et médicales Elsevier SAS

1. Introduction

Let W; be one-dimensional Brownian motion and Igt[0, 1] — R be a Holder
continuous function. There are a number of equivalent ways to define the local time
of W, along the curvef. We will show the equivalence below, but for now defibé as
the limit in probability of

t
1
% / L r)—e.fis)+e)(Ws) ds
0

ase — 0. Let

Se={f Sup IFOISLIf) = OIS s — 1|7 if 5,0 <1}

<r<1
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We were led to the results in this paper by the following question.
QUESTION 1.1. —Is sup,g, L1 finite?

Our interest in this problem arose when we were working on Bass and Burdzy [2].
A positive answer to Question 1.1 at that time would have provided a proof of uniquenes:
for a certain stochastic differential equation; we ended up using different methods.

However, probably the greatest interest in Question 1.1 has to do with questions abot
metric entropy. The metric entropy 61 is known to be of order /k; see, e.g., Clements
[5]. That is, if one takes the cardinality of the smallesatet for S; (with respect to the
supremum norm) and takes the logarithm, the resulting number will be bounded abov
and below by positive constants timeg 11t is known (see Ledoux and Talagrand [8])
that this is too large for standard chaining arguments to be used to prove finiteness c
SUPrcs, L]. Nevertheless, the supremum in Question 1.1 is finite.

It is a not uncommon belief among the probability community that metric entropy
estimates are almost always sharp: the supremum of a process is finite if the metri
entropy is small enough, and infinite otherwise. That is not the case here. Informally, ou
main result is

THEOREM 1.2. —The supremum of — L{ overS, is finite if o« > % and infinite if

1

See Theorems 3.6 and 3.8 for formal statements.

The metric entropy of, whena € (%, 1] is far beyond what chaining methods can
handle. Sometimes the method of majorizing measures provides a better result than th
of metric entropy. We do not know if this is the case here.

For previous work on local times for space-time curves, see Burdzy and San Martin [4
and Dauvis [6]. For some results on local times on Lipschitz curves for two-dimensional
Brownian motion, see Bass and Khoshnevisan [3] and Marcus and Rosen [9].

In Section 2 we prove the equivalence of various definitiong ofas well as some
lemmas of independent interest. In Section 3 we prove finiteness of the supremum ove
S. whena > 1 and that this fails when < 1. We also show thatf, 1) — L/ is jointly
continuous ors, x [0, 1] whena > 1.

The letterc with subscripts will denote finite positive constants whose exact values
are unimportant. We renumber them in each proof.

2. Preliminaries

We discuss three possible definitionsgf.

() L] = |ima—>02%fé Lir5)—e fis)+e) (Ws) ds;

(i) L/ is the continuous additive functional of space-time Brownian motion
associated to the potential’ (x, 1) = 01_’ p(s,x, f(t +5))ds, wherep is the
transition density for one-dimensional Brownian motion;

(iii) (for f e Sy only) L/ is the local time in the semimartingale sense at 0 of the
processW, — f(1).

One of the goals of this section is to show the equivalence of these definitions. We

begin with the following lemma which will be used repeatedly throughout the paper.
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LEMMA 2.1.-Supposed! and A2 are two nondecreasing continuous processes with
A} = A3=0. Let B, = Al — A?. Suppose that for alf < ¢, and some right-continuous
filtration {F;},

E[Al - AL | F] <M, as. i=12,
and for alls <t
|E[B, — B, | /]| <y, as.

There existy, ¢ such that for alln > 0,

P(suplBy| > A\/y M) < c18” %",
s<t
Proof. —~We have
t
(B, — B,)? = 2/(Bt _B,)dB,.

Using a Riemann sum approximation (cf. Bass [1, Exercise 1.8.28]) we obtain

E[(B, — B,)?| F,] = 2E / (B, — B,)dB, | F,

-t
—2F /E[B,—Brm]d&m

<4y M.

oot
<2F /y(dAHdAf)m

This inequality holds a.s. for eash The left hand side is equal to
E[B?| F,] — 2B,E[B, | F,] + B?
and hence is right continuous. Therefore there is a null set outside of which
E[(B, - B)?| ;] <4yM
for all s. In particular, ifT is a stopping time, by Jensen’s inequality we obtain

1/2

E[|B, — Br| | Fr] < (E[(B: — Br)?| Fr])™* < (dy M)Y/2.

Our result now follows by Bass [1, Theorem 1.6.11], and Chebyshev’s inequatlity.

Let W, be one-dimensional Brownian motion. Define

p(t,x,y) = (2wt) Y2 exp(—|x — y|?/2t), (2.1)
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the transition density of one-dimensional Brownian motion. In the rest of the p&per,
will denote the (right-continuous) filtration generatedWy.
For a measurable functiofi: [0, 1] — R set|| f|| =sup¢, | f(1)|. Let

t

1
D/ (e) = 2_8/1(f(s)—s,f(s)+5)(Wv)ds~
0

PrROPOSITION 22 —For f measurable on[0, 1], there exists a nondecreasing
continuous process; such thatE||D/(¢) — L/ ||2— 0 ase — O.

Proof. —Let E*" denote the expectation corresponding to the distribution of
Brownian motion starting fromx at timez, i.e., satisfyingW, = x. For anyx and any
r <1,

1 1t 1 1—t f(t+s)+e
E(X’t)g / 1(f(l+s)—s,f(t+s)+a)(Wl+5)ds = 2_8 / / P(S,x» y) dy ds
0 0 f(t+s)—e

t

— t <c (2.2)

ﬁ

%\

1-
1/
0

This implies that,

1-

E[D{(¢) — D/ (e) | Fi] = EW:) — /<f<,+s>_g,f<z+s)+s)<W,+s)ds<cZ. (2.3)
0

The supremum of
ft+s)+e
2_ / p(S, X, y) dy
£
ft+s)—e

overe > 0,r < 1ands <1-tis bounded. By the continuity gi(s, x, y) in y and the
bounded convergence theorem,sas 0,

1—t f(t+s)+e

1—t
1
2—/ / p(s,x,y)dyds — /p(s,x,f(t+s))ds
e

0 ft+s)—e 0

uniformly overx andt. Calculations similar to those in (2.2) and (2.3) yield the following
estimate: for any; > 0,
[E[(D{ (e2) — D{ (e2)) — (D{ (e1) = D/ (e2)) | ]| <, as, (2.4)

for all + < 1 providede; ande, are small enough.
Because of (2.3) and (2.4), we can apply Lemma 2.1 with= D/ (¢1) and A2 =
D,f(sz). The estimate in that lemma shows that, in a sense, the supremum of the
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difference betweerD/ (e1) and D/ (s,) is of order /7. We see thafE(|| D/ (s1) —
D/ (g5)||?) — 0 aseq, s, — 0. This implies that{ D/ (e,)} is a Cauchy sequence, and
thereforeD/ (s,)) converges as — oo, for any sequencés,} converging to 0. Denote
the limit bny; it is routine to check that the limit does not depend on the sequepke
Since the convergence is uniform ovesinds — D/ (¢) is continuous for every, then
L,f is continuous inr. For a similar reasorr,— L,f is nondecreasing. O

Remark2.3. — A very similar proof shows thdt; is the limit in L2 of

t
1
g/l[f<s>,f<s>+s>(Ws)ds.
0

Remark2.4. — Let
1—t

Uf(x,t):/p(s,x,f(t—i—s))ds.

0

A straightforward limit argument shows that

[uny

—t

E[L] —L{ | F]= [ p(s. W, f(t+5))ds. (2.5)

o —__

It follows thatU/ (W,, 1) is a potential for the space-time Brownian motios- (W,, 1).
Hence the functiorV/ (x, t) is excessive with respect to space-time Brownian motion,
and thereford./ can also be viewed as the continuous additive functional for the space-
time Brownian motion(W,, t) whose potential i€/ /.

COROLLARY 2.5. —Supposef, — f uniformly. Then||L/* — L/| converges td
in L2,

Proof. —From (2.5),

u
1
—ds<cvl—u<cer

E[L{_L1{|fu]<cl \/E

o~

and
[E[L{ — L | ] —E[L{ — L] | 7]
1—u

/ (P (5 War fultt +5)) = p(s. War £ +5))] ds
0

1-u

< / |p(s, Wy, fuu~+s)) — p(s, Wy, fu+s))|ds.
0
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The right hand side tends to 0 by the assumption fhat- f uniformly, and the result
now follows by Lemma 2.1, using the same argument as at the end of the proof of
Proposition 2.2. O

If f is a Lipschitz function, theiW, — f(¢) is a semimartingale. We can therefore
define a local time foW, along the curvef by settingK,f to be the local time (in the
semimartingale sense) at 0jf= W, — f(¢). That is,

t
K/ =Y, — Yol - /sgn(Ys)dYS.
0

PROPOSITION 2.6. —With probability onex; = L] for all r.
Proof. —By Revuz and Yor [10, Corollary VI.1.9],

t
1
K/ =tim > [ 10,1 d(y),. (2.6)
0

SinceY, = W, — f(1), then(Y), = (W), =, and so by Remark 2.%;/ = L/ a.s. Since
both X/ andL; are continuous im, the result follows. O

3. Thesupremum of local times

Our first goal is to obtain an estimate on the number of rectangles of 5i2é) x
(2/+/N) that are hit by a Brownian path. Fix anye R andb € (a, a + 2/+/N]. Let

I;={3te[(j —D/N,j/Nl:a< W, <b)},

and

k
Ac=> 1.
j=1
LEMMA 3.1. -There exist; andc, such that for allx > 0,
P(A = AVk) < cre7,
Proof. —There is probability; > 0 independent af such that

P*( sup |W, — Wo| <1/v/N) > ca.
s<1/N

So by the strong Markov property applied at the first [(; — 1)/N, j/N] such that
a < Wt < bl

e3P (1) <P (W € [a — (1/v/N),a+ (3/~/N)]).
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This and the standard bound

d
1 1
PX(W, € [c. d]) = / ﬁe—'y—”z’/zf dy < —=—1|d —cl,

/] N2t
imply that
P < cpe e = 4
)R CA—F =" = -
’ VNVIIN i
Therefore
k
E*Ar =Y P*(I) < csv/k. (3.1)
j=1
By the Markov property,
E[Ar — Ai | Finl SLHEY A, < covk. (3.2)

Corollary 1.6.12 of Bass [1] can be applied to the sequefigéc7v/k), in view of (3.1)
and (3.2). That result says th&texp(cssup, Ax/(c73/k)) < 2 for somecg > 0. This
easily implies our lemma. O

Fix an integerN > 0. LetR,,, = Ry,,(N) be the rectangle defined by
Ry =[¢/N,(+1)/N]x [m/N* (m+1)/N%, O<L<N, —N*—1<m<N“
Let K be such thalv/K is an integer and/N < N/K < /N + 1. Set
Qix = Qu(N) =[iK/N, (i + K /N1 x [k(K/N)*, (k+ 1)(K/N)*],
forO<i < K and—(N/K)* — 1<k < (N/K)*. Note thatQ;,(N) = R;x,(N/K) but it

will be convenient to use both notations.

PROPOSITION 3.2. — Leta € (1/2,1] and ¢ € (0,1/16). There exisic, ¢, and c3
such that
(i) there exists a saby with P(Dy) < 1N exp(—coN#/?);
(i) if o ¢ Dy and f € S,, then there are at most;N ®/4+¢/2 rectanglesRy,, in
[0, 1] x [—1, 1] which contain both a point of the graph gfand a point of the
graph of W, (w).

Proof. —Let

Iy = {3t € liK/N +(j — D/N,iK/N + j/N]: k(K/N)* < W, < (k + D)(K/N)*},

K
A = Z 1, and Cy=Cy(N)={Ay> K2+,
=
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By Lemma 3.1 withk = [K] andA = K¢, and the Markov property appliedak /N we
haveP(C;;) < ¢4 exp(—csK?).

There are at mos N Y/27@/2 rectangleD;, so if Dy = U; ; Cix, where 0< i < K
and—(N/K)* — 1<k < (N/K)“, then

P(Dy) < ezNH2exp(—csK*®) < c7N exp(—cgN*/?).

Now supposes ¢ Dy. Let f be any function irS,. If f intersectsQ;, for somei and
k, then f might intersectQ; ,_1 and Q; ;1. But becausg € S, it cannot intersec;,
for anyr such thair — k| > 1. Thereforef can intersect at most(® + 1) of the Q;;.

Look at any one of the);, that f intersects. Since» ¢ Dy, then there are at most
K 1/2+¢ integersj that are less thaik and for which the path oW, (w) intersects
(iK/N+(j—1)/N,iK/N + j/N] x [-1,1]) N Q. If f intersects a rectanglg,,,,
then it can intersect a rectangk, only if |[r — m| < 1, sincef € S,. Therefore there
are at most K ¥/?2+¢ rectanglesk,,, contained inQ;, which contain both a point of the
graph of f and a point of the graph ¥, (w).

Since there are at most8 + 1) rectangles);, which contain a point of the graph of
f, there are therefore at most

rectanglesR,,, that contain both a point of the graph gfand a point of the graph of
Wi(w). O

We can now iterate this to obtain a better estimate.

PrROPOSITION 3.3. —Fix « € (1/2, 1] and$é, n > 0. There exist; and Ny such that if
N > Np:
() there exists a sef with P(E) < 7;
(i) if o ¢ E and f € S,, then there are at most;N/2+ rectanglesR,,,(N)
contained in[0, 1] x [—1, 1] which contain both a point of the graph gfand a
point of the graph oW, (w).

Proof. —For anye, the quantityc; N exp(—c,N¢/?) is summable. First choosee
(0, 8/4) and then choos#, large so that, using Proposition 3.2 and its notation,

Z P(Dy) < Z c1N exp(—cst/z) <.

N=N1 N=N;

Let E=Uy_y, Dn-

Fix w ¢ E. SupposeV is large enough so that N > 2N;. Recall the definition ok
and note thatv/K differs from+/N by at most 1. Then by Proposition 3.2 applied with
N/K, there are at most(+v/N)®/4+¢ rectanglesk, (N /K) that contain both a point of
the graph off and a point of the graph d¥, (w). Recall the definitions of the events;
and Dy from Proposition 3.2 and its proof. Since we are assumingadhaiE, we also
havew ¢ C; (N) for anyi, k. This implies that inside each rectangtg, (N/K), there
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are at mosts(v/N)/2+¢ rectanglesr,,, (N) that contain both a point of the graph pf
and a point of the graph d¥,(w). Thus there are at most

C4(\/ﬁ)(3/4)+5(\/ﬁ)(1/2)+8 :C4N(5/8)+s

rectanglesR,,, (N) that contain both a point of the graph gfand a point of the graph
of W, (w).

We continue iterating: takeV large so thatN > (4N1)*. There arec,(+/N)®/®+¢
rectanglesrk,,,(N/K) that contain both a point of the graph gfand a point of the
graph of W, (w). Each of these contains at magt/N)®/2+¢ rectanglesk,,,(N) that
contain both a point of the graph gfand a point of the graph d¥;(w), for a total of

Cs(ﬁ)(5/8)+s(ﬁ)(1/2)+s :CGN(9/16)+5

rectanglesk,,,(N).

Continuing, if N is large enough, we can get the exponeniads close tal/2) + ¢
as we like. In particular, by a finite number of iterations, we can get the exponent les:s
than(1/2) +6. O

Recall the definition op (¢, x, y) in (2.1).
LEMMA 3.4.-If | f — g| <&, then for some constant and alle < %

1

/|p(t, 0, f(1)) — p(t,0,8(1))| dr < c1elog(1/e).

0

Proof. —For ¢ < €2, we use the estimate(, 0, x) < ¢t ~%/? and obtain

52 52 1
/|p(t,0, f@)—p(1,0,g())|dr < 2cz/$dt < cae.
0 0

Fort > £2, note that

X 2 X 2
4t_1/2ue_x /2t :C4t—1ue—x /2t < C5t_1

’

‘ ap(t,0,x)
0x

since|y|e **/2 is bounded. We then obtain
1

1
/ p(1.0. £ (1)) — p(t.0. (1)) | di < / () — g(0)|est~Ydt

g2

1
<cse / t7Ydt = cgelog(1/e).
g2

Adding the two integrals proves the lemmat
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PROPOSITION 3.5. —Let f and g be two functions with

sup | f()—g®)]<$

(-D/N<ISj/N

Then, for allx > 0,
f f g 8 -1/4 1/2 —Col
P(|(Ljw = Lij—ayw) = (Lf)n = LE_pyn)| 2 ANT77(810g(1/8)) ") < c1€™

Proof. —Write s for (j —1)/N andA/ =L/, — LI, Af = L., — L8. We have for
s<r<t<s+(@1/N),

E[AS — AT | F,] =E" Al < supEZAl/N

But for anyz,

1/N 1/N

IF‘JZAiJLC/N:/ (t <, f(t) /7dt<€3N 12,

0

We have a similar bound fd&Af, . For the difference, we have
[E[(A] — A%) — (4] - A%) | F]| = [EW [AL, - AL,]].

However, for any,

S+t—r

‘EZ[Atf—r _Alg—r” = / [p(l/l,Z, f(bt)) —p(M,Z, g(”))} du

A

1
</|p(u,0, F@) = p(u. 0. 5w))| du,
0

where we definef (u) = f(u) — z for all u and we defingu) = g(u) — z if s <u <
s+ (¢t —r)andg(u) = f(u) otherwise. Sd| f (u) — g(u)|| <, and by Lemma 3.4,

B (AL, — AF,]| < ca8log(1/6).

Our result now follows by Lemma 2.1.0

THEOREM 3.6. —For anya € (1/2 1] there eX|stst such that
(i) foreachf € S,, we haveL, =L/ forall ¢, as.,
(i) with probability one,f — L1 is a continuous map o, with respect to the
supremum norm, and _
(iii) with probability onesup;s, L] < cc.
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Proof. —

Step 11In this step, we will define and analyze a countable dense family of functions
inS,.

Let N = 2" and letT, denote the class of functiornin S, such that on each interval
[(j —1)/N, j/N]the functionf is linear with slope eitheN*=* or —N~* and £ (j/N)
is a multiple of ¥ N* for eachj. Note that the collection of all functions which are
piecewise linear with these slopes contains some functions which are §pt-irsuch
functions do not belong t@;,.

Consider any elemerit of S,. Let h™ denote a function irf;, which approximates
h in the following sense. We will defin@™ inductively on intervals of the form
[(j —1)/N, j/N]. First we take the initial valu#™ (0) to be the closest integer multiple
of 1/N“ to h(0) (we take the smaller value in case of a tie). The slopk‘dfis chosen
to be positive ori0, 1/ N1 if and only if 2 (0) < h(0). Once the functiork ™ has been
defined on all interval§(; — 1)/N, j/N1, j = 1,2, ..., k, we choose the slope a&f"
on[k/N, (k+ 1)/N] to be N*=* if and only if 1™ (k/N) < h(k/N). Strictly speaking,
our definition generates some functions with valueg+i — 1/N*, 1+ 1/N¢] rather
than in[—1, 1] and sax™ might not belong taS, . We leave it to the reader to check that
this does not affect our arguments.

We will argue thath™ (1) — h(t)| < 2/N* for all t. This is true forr = 0 by definition.
Suppose that IN® < |h™(t) — h(1)| < 2/N* for somet = j/N. Then the fact that
both functions belong t&, and our choice for the slope @f” easily imply that the
absolute value of the difference between the two functions will not be greater at time
t=(j+1/N than at timer = j/N. An equally elementary argument shows that in
the case whemz™ (1) — h(1)] < 1/N¢, the distance between the two functions may
sometimes increase but will never exce¢d2. The induction thus proves the claim for
all timesr of the forms = j/N. An extension to all other timesis easy.

Later in the proof we will need to consider the difference betwgghand #"+,
First let us restrict our attention to the intery&f N, (£ + 1)/ N]. The estimates from the
previous paragraph show that™ (1) — h"+V ()| < 4/N* on this interval. Let

AL AL RO+D G —(1/4— (/2
Fe= {|(L(e+1)//v - LZ/N) - (L(e+1)/N - LZ/N )| = N Wh=tes )+5}~
By Proposition 3.5 withh = N¢, for anyh € S,, £ andn,
]P)(Fh,g) < exp(—CzNg).

There are onlyN + 1 integers? with 0 < ¢ < N. For a fixed¢, there are no more
than 3v¢ possible values ot (¢/N), and the same is true f@&™ ((¢ + 1)/N). The
analogous upper bound for the number of possible values for eadl' of (¢/N),
RO (¢ +1/2)/N) andh ™D ((¢ + 1)/N) is 6N®. Hence, if we let

Gy = U U Fri,

heSy 0KUKN

then
P(Gy) < caN>* T exp(—caN?).



638 R.F. BASS, K. BURDZY / Ann. |. H. Poincaré — PR 37 (2001) 627—642

We will derive a similar estimate fof ™ andh™, where f,h € S,. Let us assume
that|| f — k|| <1/N%. Then|f™ () — h™ ()] < 5/N* for all ¢. If we define

~ (n) (n) ) ) B B
Frne={|(Llpsyn — LLn) — (Ll — Liy) | > N-WO- @2t

then
P(Fy.¢) < c7eXp(—csN*).
Next we let
Gy = U U Frpe
fheS, OSLLN

Counting all possible pathg™ andx™ yields an estimate analogous to the onedagr,
]P)(GN) < C9]V40H—:L exp(—CSN*’) .

Step 2 In this step, we will prove uniform continuity of — L{ on the setl,, =
U2 T,

Fix arbitrarily smalln, 8 > 0. Chooses > 0 so small tha(1/4) — («/2) + 2¢ < 0.
Recall the event®, from Proposition 3.2. Sincg y (P(Dy) +P(Gy) +P(Gy)) < o0,
we can takeV, sufficiently large so thdP(H) < n, whereH = U}’V":NO(DN UGyUGy).
Without loss of generality we may také, to be an integer power of 2, saéyy = 2"°.

Fixanw ¢ H. Consider anyf, h € T, with || f — k|| < 1/N§. Note that

o0
(ng) (n+1) (n)
Ly -1y 1<y Ly - Ly, (3.3)
n=ng
and

(n+1) (n) Z (n+1) (n+1) (n) (n)

h" h h" h" h" h
LT = LU <Y (Lo = Ly ) = (Ligayjor = Lyy2e) | (34)

m=1

Consider 2= N > No. Sincew ¢ Uy>y, Dn, Proposition 3.3 implies that there are
at mostc; N ¥/2+¢ values ofm for which there is a rectangl®,,; in which there is a
point of the graph oh™ or of 1"V and a point of the graph ¥, (w). So there are no
more tharnc; N /2+¢ summands on the right hand side of (3.4) that are non-zero.

For a value ofn for which the summand on the right hand side is nonzero, it is at most
N~-ED=@/2% hecause ¢ [y, G- Multiplying the number of nonzero summands
by the the largest value each summand can be, we obtain

|Lg("+1> _ LJIW < ClN(1/2)+aN—(1/4)—(a/2)+£

— ClN(1/4)_(Ol/2)+28 — 61(2}1)(1/4)_(05/2)"1‘28. (3.5)

We have assumed thais so small that1/4) — («/2) + 2¢ < 0, so the bound in (3.5) is
summable im. We increasey, if necessary, so that, ., c1(2")/P~@/2+2 L /3,
Then (3.3) implies that

h h(0)
-1}

<B/3



R.F. BASS, K. BURDZY / Ann. |. H. Poincaré — PR 37 (2001) 627—642 639

Similarly,

- "

<B/3.

.. . . . (ng) (ng)
A similar reasoning will give us a bound quL{ — L""|. We have

(ng) (ng) (n) (n) (n) (n)
|L{ - LI]l. ° Z| {@-‘rl)/N {/N) - (L?Z-‘rl)/N - L?/N)|

First, the number of non-zero summands is bounded; "> **, for the same reason
as above. We have assumed thgt— i| < 1/N§, so, in view of the fact thatv ¢

Unsn, G, the size of a non-zero summand is boundeavgy”’ ¥ ~“/?**. Hence,

(nQ) (ng) (14— 1/8)—(a/2)+2
|Lf 0 _Lq 0 <C1Nél/2)+aN0 1/8—(a/2)+e 261(2"0)( /B —(a/2)+2¢ < 13/3

By the triangle inequality, with probability greater than-1,
L{ —Li|<p

if f,heTyand||f—h| <1/N§ a 3(B). We now fix an arbitrarily smaly, > 0 and a
sequencegs; — 0, and finds(8;) > 0 such that with probability greater than-1;o/2*,

L] — L}| < Br.

if f,heTyand|f—h| <48(B). Thisimplies that, with probability greater than-Io,

the function f — L{ is uniformly continuous orf,,. Sincenq is arbitrarily small, the
uniform continuity is in fact an almost sure property, although the modulus of continuity
may depend om.

For an arbitraryf € S,, defineL’ =lim,_, L{" . By Corollary 2.5,L = L' as.
ThereforeL/ is a version ofL/.

Since the functionf — L{ is uniformly continuous oI7,, its extension taS, is
uniformly continuous with the same (random) modulus of continuity. The failys
equicontinuous, hence a compact set with respedt-th Therefore the supremum of
L] overS, is finite, a.s. O

Remark3.7. — It is rather easy to see that, with probability ofie:> Ll is actually
jointly continuous onS, x [0, 1]. To see this, note that in the proof of Proposition 3.5
we used Proposition 2.1, so what we actually proved was that

_ 1/2 e
P sup (LY —L{iyy) = (Lf = L{_y) | 2 AN"V4(8l0g(1/8) %) < e
(=D/n<t<j/n

If we replace (3.4) by
217

(n+1) (n+1) m o
< E : sup (L} LZ/zn )— (L7 - Liln/zn)
m/2 << D)/2"

(n+1) (n)
Ly - L

’

sup|
t
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then proceeding as in the proof of Theorem 3.6, we obtain the joint continuity.

We will show that, in a sense, sk, L] = oo, a.s., ifa < 1/2. This statement is

quite intuitive — one would like to lef () = W, (w) SO thatL{(a)) = oo — but we have

not defined the local time simultaneously for dlle S,, and there is a difficulty with

the number of null sets. Theorem 3.6 suggests that the question of joint existence is tie
to the question of the finiteness of the supremum, so we have to express our result in
different way.

THEOREM 3.8. —Suppose < 1/2. Then there exists a countable familyc S, such
thatsup, ., L{ = co as.

Proof. —Let ¢; be the ordinary local time at for Brownian motion. It is well known
that there exists a version of this process which is jointly continuous and: (see
Karatzas and Shreve [7] but note that their local times are half of our local times).

Suppose that a piecewise linear functigris equal toy on an intervalls, t]. Then
Proposition 2.2 and a similar well known result fér show that with probability one,
forall u € [s, ],

LI-Li=¢-20.

Fix « € (0,1/2). Let F be the countable family of all functiong defined on the
interval [0, 1] such that for some integers= n(f) andm = m(f), on each interval of
the form[(j — 1)/n, (j — %)/n] the functionf is a constant multiple of 2", f is linear
on the intervalq(j — %)/n, j/nl,and f € S,. Then, with probability one, for alf, all
f e Fandn=n(f),

FG-D/n) 1 FG=D/m) _ g fG=D/m)  pf(G=1)/n)
LiiZaj2ym = Lii=ayn - = G-aj2ym = €G-myn - (3.6)

In the rest of the proof we assume that this assertion and the joint continuifyhoid
for all w.
Let

T =inf{s: |W,| > 1 ordr,s <t such thaW, — Wy| > (5Ir —s|)"}. (3.7)

By the well-known results on the modulus of continuity for Brownian motibrn; 0 a.s.
Let ¢ > 0. There existsy such thatP(T < §) < . Fix n. On the interval[(j —
1/n, (j—32)/nl, let f1(t) = W((j —1)/n). Onthe interval(j — 3)/n, j/n] let fi(t) be
linear with f1(j/n) = W(j/n). Let fo(t) = f1(¢) for t < §/2 and constant far > §/2.
It is quite easy to show thagt € S, for eachw in the set{T > §} using the definition
(3.7) of T. By the Markov property, the random variables

L BG=D/) (=D
Xj =G w2y m = G-/
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form an independent sequence, and by Brownian scalings ~/2nX; has the same
distribution ast§. Letc; = E¢2. By Chebyshev's inequality,

]P)<
Taken large so thats/(6n) < €. Then there exists a sdt, of probability at most 2
such that ifw ¢ A,, thenT (w) > § and

[6n/2]

S () — e [8n/2VarYy _ cE(D? _ cs
f =
j=1

(c16n/BH2 ~  8n sn’

> c18n/4> <

[5n/2]
Z X; = caVén.
j=1

We now choose: large and findf; € F so that on each interv@lj —1)/n, (j — %)/n]
the function f3 is a multiple of 2™, f3is linear on the intervalg(j — %)/n, j/nl],and

[6n

~

2]
FG=D/m)  pfa(G=D)/m) .
G2 m — CG—tym | = ca/én/2;

Il
iR

J

this is possible by the joint continuity @f .
By (3.6) we can replacé by L in the last formula, so

(3n/2]
! s s o
L' > ) [LG-aapm = LG-vyml = cav/on/2
j=1

We conclude that

SUpL?! > c4v/8n/2,

feF
with probability greater than or equal to-12¢. Sincen and ¢ are arbitrary, the
proposition is proved. O
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