@article{AIHPB_2002__38_1_91_0, author = {Bertini, Lorenzo and Cancrini, Nicoletta and Cesi, Filippo}, title = {The spectral gap for a {Glauber-type} dynamics in a continuous gas}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {91--108}, publisher = {Elsevier}, volume = {38}, number = {1}, year = {2002}, mrnumber = {1899231}, zbl = {0994.82054}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_2002__38_1_91_0/} }
TY - JOUR AU - Bertini, Lorenzo AU - Cancrini, Nicoletta AU - Cesi, Filippo TI - The spectral gap for a Glauber-type dynamics in a continuous gas JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2002 SP - 91 EP - 108 VL - 38 IS - 1 PB - Elsevier UR - http://archive.numdam.org/item/AIHPB_2002__38_1_91_0/ LA - en ID - AIHPB_2002__38_1_91_0 ER -
%0 Journal Article %A Bertini, Lorenzo %A Cancrini, Nicoletta %A Cesi, Filippo %T The spectral gap for a Glauber-type dynamics in a continuous gas %J Annales de l'I.H.P. Probabilités et statistiques %D 2002 %P 91-108 %V 38 %N 1 %I Elsevier %U http://archive.numdam.org/item/AIHPB_2002__38_1_91_0/ %G en %F AIHPB_2002__38_1_91_0
Bertini, Lorenzo; Cancrini, Nicoletta; Cesi, Filippo. The spectral gap for a Glauber-type dynamics in a continuous gas. Annales de l'I.H.P. Probabilités et statistiques, Tome 38 (2002) no. 1, pp. 91-108. http://archive.numdam.org/item/AIHPB_2002__38_1_91_0/
[1] Relaxation of disordered magnets in the Griffiths regime, Comm. Math. Phys. 188 (1997) 135-173. | MR | Zbl
, , ,[2] Heat Kernels and Spectral Theory, Cambridge Univ. Press, 1989. | MR | Zbl
,[3] Perfect simulation for interacting point processes, loss networks and Ising models, Preprint, 1999. | MR
, , ,[4] Logarithmic Sobolev inequalities for unbounded spin systems revisited, in: Séminaire de Probabilités, XXXV (Berlin), Springer, Berlin, 2001, pp. 167-194. | Numdam | MR | Zbl
,[5] Concentration of measure and logarithmic Sobolev inequalities, in: Séminaire de Probabilités, XXXIII, Lecture Notes in Mathematics, 1709, Springer, Berlin, 1999, pp. 120-216. | Numdam | MR | Zbl
,[6] Interacting Particle Systems, Springer, Berlin, 1985. | MR | Zbl
,[7] Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys. 156 (1993) 399-433. | MR | Zbl
, ,[8] Lectures on Glauber dynamics for discrete spin models, in: Lectures on Probability Theory and Statistics (Saint-Flour, 1997), Lecture Notes in Mathematics, 1717, Springer, Berlin, 1999, pp. 93-191. | MR | Zbl
,[9] Approach to equilibrium of Glauber dynamics in the one phase region I: The attractive case, Comm. Math. Phys. 161 (1994) 447. | MR | Zbl
, ,[10] Approach to equilibrium of Glauber dynamics in the one phase region II: The general case, Comm. Math. Phys. 161 (1994) 487. | MR | Zbl
, ,[11] Infinitely Divisible Point Processes, Wiley, Chichester, 1978. | MR
, , ,[12] Spatial birth-and-death processes, Proceedings of the 40th Session of the International Statistical Institute (Warsaw, 1975), Bull. Inst. Internat. Statist. 46 (1975) 371-391. | MR | Zbl
,[13] Superstable interactions in classical statistical mechanics, Comm. Math. Phys. 18 (1970) 127-159. | MR | Zbl
,[14] Equilibrium fluctuations for interacting Brownian particles, Comm. Math. Phys. 103 (1986) 1-33. | MR | Zbl
,[15] The equivalence of the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition, Comm. Math. Phys. 144 (1992) 303-323. | Zbl
, ,[16] The logarithmic Sobolev inequality for discrete spin on a lattice, Comm. Math. Phys. 149 (1992) 175. | MR | Zbl
, ,[17] The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice, Ann. Inst. H. Poincaré Probab. Statist. 37 (2) (2001) 223-243. | Numdam | MR | Zbl
,[18] The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice, Comm. Math. Phys. 175 (1996) 401-432. | MR | Zbl
,