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ABSTRACT. – Inspired by previous results on asymptotic minimax estimation for a ball of
increasing radius inRn, we study the analogous problem for domains of importance in order-
restricted inference. In particular, we study domains that are formed by the intersection of a
ball and a fundamental chamber of a finite reflection group inR

n. We show (1) how to obtain
the principal eigenfunction of such a domain and asymptotically, the related least favourable
distribution for the associated minimax problem, (2) that the order and positivity constraints in
the usual statistical problems generate such chambers and (3) and in an analogous way to the
work of Bickel [5] in the one dimensional case, how to find the asymptotic minimax risk and the
second order asymptotic minimax estimate for such a domain. 2002 Éditions scientifiques et
médicales Elsevier SAS
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RÉSUMÉ. – Inspiré par les résultats existants sur l’estimation asymptotique minimax pour une
boule de rayon croissant dansR

n, nous étudions le problème analogue pour certains domaines
importants en inférence avec des contraintes d’ordre. Plus particulièrement, nous étudions les
domaines formés par l’intersection d’une boule et d’une chambre fondamentale d’un groupe de
réflexions dansRn. Nous montrons (1) comment obtenir la fonction propre principale d’un tel
domaine et la loia priori la moins favorable asymptotiquement pour le problème du minimax
associé, (2) que les contraintes d’ordre et de positivité dans les problèmes statistiques usuels
engendrent de telles chambres et (3) d’une manière analogue au travail de Bickel [5] dans
le cas unidimensionnel, comment trouver le risque asymptotiquement minimax et l’estimateur
asymptotiquement minimax du second ordre sur un tel domaine. 2002 Éditions scientifiques et
médicales Elsevier SAS
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1. Introduction

In many parametric statistical estimation problems, there is definite prior information
concerning the values of a parameter vector(ω). There may be bounds on the individual
components(ω)i such as “the norm ofω is at mostc” or “a subset of theωi are
non-negative” or the “ωi ’s are non-increasing ini”. Many computationally feasible
estimation methods have been developed to capitalize on such information. How could
one theoretically compare the performance of various possible estimators when such
prior information is present? One common, admittedly conservative, approach is the
worst-case analysis: given some error measure, compute the maximum expected error
over the restricted parameter space, and then seek the estimator that minimizes this
maximum risk. The resulting best or minimax risk provides a benchmark against which
to measure other estimators.

Here we recall various definitions of statistical decision theory associated with
the estimation of an unknown parameter vectorω given an observation ofx ∈ X,
where X is a random vector whose distribution depends on the parameterω ∈ �,
the parameter space. A solution consists of a nonrandomized estimator or decision
procedureδ, which is a measurable function from the sample spaceX → �. Let A
denote the space of all possible estimates. A risk functionR(δ,ω) characterizes the
performance of a decision procedureδ for each value of the parameterω. The risk
function is usually defined in terms of an underlying loss functionL(δ,ω) which
mapsA × �→ R

+ ∪ {0} (whereR
+ is the positive real line). To be able to confine

our attention to nonrandomized estimators, it will be assumed that the loss function
is convex inδ and thatA and� are also convex. The loss function will usually be
assumed to equal the quadratic loss function

∑
(δi − ωi)

2. The risk of an estimator
δ when ω is true, R(δ,ω), is then the average loss incurred from usingδ; that is,
R(δ,ω)=EωL(δ(X),ω). An estimatorδ∗ is minimax for the above problem, if

sup
ω∈�

R(δ∗,ω)� sup
ω∈�

R(δ,ω)

for all δ ∈ A. We will let ρ(�) denote the minimax risk on�; i.e., ρ(�) =
infδ∈A supω∈� R(ω, δ). Note that if�= R

n then for the normal mean estimation problem
ρ(Rn)= n.

Minimax problems are often solved by considering the corresponding Bayes prob-
lems. A distribution or prior probability measureπ is specified on the parameter space
�, and a measure of the performance of a procedureδ is given by its Bayes risk

r(δ,π)=
∫
�

R(δ,ω)π(dω).

Now δπ is called the Bayes procedure with respect to the prior probability measureπ if
δπ minimizes the Bayes risk. The Bayes riskr(π) of a distribution or prior probability
measureπ on � is defined asr(π) = r(δπ ,π). A distribution or prior probability
measureπ∗ is “least favorable” if its Bayes risk is greater than or equal to that of
any other distribution. Subject to the decision problem satisfying sufficient regularity
conditions, a least favorable prior distribution exists and the corresponding Bayes
procedure is minimax (see Wald [29], Ferguson [12], Brown [7], and Kempthorne [18]).
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Here we consider the normal mean estimation problem; that is,X is a Nn(ω, In)
random vector wheren represents the dimension of the space,In the (n × n) identity
matrix and let us assume that the vectorω is contained in the parameter space� which
is a closed bounded convex domain inR

n.
Casella and Strawderman [9] first found exact minimax estimates for intervals of the

form [−t, t] for small t for this problem in one dimension. (See also Zinzius [31].)
Donoho, Liu and MacGibbon [10] studied minimax estimates and affine-minimax
estimates for the problem of estimating the mean of a standard Gaussian shift when
the mean is known to lie in an orthosymmetric, convex and quadratically convex set
in �2. However, for many closed bounded domains� of R

n (satisfying�= int�), the
finding of exact minimax solutions is analytically intractable. A more soluble analytical
problem involves the study of asymptotically minimax estimates; that is, we can consider
the asymptotic behaviour of the minimax risk

ρ(t�)= inf
δ

sup
ω∈t�

EωL
(
δ(X),ω

)

for positive t and the construction of such asymptotically minimax estimators as
t → ∞.

The connection between asymptotic minimax risk and the principal eigenvalue of
an elliptic equation was first elaborated in a series of papers by Levit [19–21] and
Berkin and Levit [4] which studied asymptotic second-order minimax estimators under a
general class of loss functions in Gaussian and locally asymptotic Gaussian settings, and
connected this problem with the principal eigenvalue of the Laplace (or more generally,
second order uniformly elliptic) equation in the domain in which the parameter lies.
Bickel [5] independently derived the results for intervals and balls in the Gaussian setting
for squared error loss, obtaining explicit second-order asymptotically minimax estimates
by suitably rescaling eigenfunctions of the sphere. Johnstone and MacGibbon [16,17]
related the problem of finding asymptotic minimax estimates of a bounded Poisson
vector to the Gaussian one.

The solution to the Dirichlet problem is easily seen to be related to asymptotically
minimax estimation of a normal mean vector (see, e.g., Berkin and Levit [4], Levit [19–
21], Johnstone and MacGibbon [17]). Essentially, finding a minimax estimator with
respect to a densityf on� is equivalent to minimizing the Fisher informationI (f )=∫
f −1|∇f |2. Since, Fisher informationI and the energy functionalI ∗ in the classical

Dirichlet problem are related byI ∗(v) = I (v2)/4 the problem of minimax estimation
becomes a search for principal eigenfunctions of the laplacian.

More precisely, using the solution to the classical Dirichlet problem for a bounded
domain (not too irregular)� in R

n (see, e.g., Gilbarg and Trudinger [14]), we have
the following general theorem (for a discussion of the proof and applications, see, e.g.,
Berkin and Levit [4], Johnstone and MacGibbon [16,17]).

THEOREM 1.1. – For � as above andt positive,
(i) The minimax risk for the n-dimensional problem just described is

ρ(t�)= inf
δ∈D sup

ω∈t�
Eω

n∑
i=1

[
δi(X)−ωi]2 = n− 4t−2λ(�)+ o

(
t−2), (1)
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whereλ(�) denotes the minimum eigenvalue of the Laplace operator� =∑n
1 ∂

2/∂ω2
j

on�, i.e., the smallestλ for which the equation

�v(ω)= −λv(ω), ω ∈ int�,

v = 0, ω ∈ ∂�
(2)

has a non-zero solution. The eigenspace corresponding toλ(�) is one-dimensional, and
the corresponding eigenfunctionv�(ω)= v(ω,�) (or −v�(ω)) is strictly positive on�.
Assume thatv� is normalised so that

∫
� v

2
� = 1.

(ii) Let G∗
t (dω) denote a least favorable prior distribution for the region�t =

t�(t > 0) andG∗t
1,�(dω) the corresponding prior rescaled to�. If we letg1(ω)= v2

�(ω)

for ω ∈� andg1(ω)= 0 for ω /∈�, then the probability measureG1(dω)= g1(ω)dω is
the weak limit of the(rescaled) least favorable distributionsG∗t

1,�. If Gt(dω) represents
the distribution corresponding toG1(dω) scaled up tot�, that is, whose density is
given bygt(x) = t−ng�(xt−1) whereg�(ω) = g1(ω), then theGt are approximately
least favorable in the following sense:

ρ(t)= r(Gt )+ o
(
t−2).

The proof depends on an easily proved identity, called Brown’s identity (see
Brown [7], Bickel [5], Brown and Gajek [8]) which says that for any prior distribution
G one has

δG(x)= x + grad log(g ∗ φn), (3)

where g is the density ofG (which is set to 0 outside of its domain of definition
�) andφn represents the standard normaln-dimensional density function andr(G) =
n− I (g ∗ φn), whereI (g ∗ φn) is the Fisher information.

So far, the only known explicit solutions for the asymptotically minimax estimation
of a bounded Gaussian vector were obtained on the sphere, an orthosymmetric domain,
or on rectangles, which are products of orthosymmetric domains. However, much
interesting statistical research has also occurred in parameter estimation under positivity
or order constraints (for an overview of this subject, see Robertson, Wright, and
Dykstra [25]). For example, the estimation of a Gaussian vector under order constraints
on the components has been shown to be a necessary part of the solution to some
statistical problems in toxicology experiments (Schoenfeld [26]).

The prior information aboutω for such a problem could consist of it being contained in
some domain�⊂ R

n such as the domain given by the inequalitiesω1 � ω2 � · · · � ωn
orω1 � ω2 � · · · � ωn � 0. Such inequalities arise in many situations in order restricted
inference (Robertson et al. [25]). These two domains are well known as the standard
fundamental domains (chambers) for certain finite groups generated by reflections (the
groups of permutations, respectively, signed permutations of the coordinates). So, with
the same effort, we may ask the question about the fundamental chamberC of an
arbitrary finite reflection groupW . We cannot handle these domains directly, one reason
being that Theorem 1.1 works smoothly only for bounded domains�. But what can be
done, and is still useful, is to consider�=C ∩B whereB is the unit ball ofRn. Using a
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symmetry argument used before by Berard [1] and Berard and Besson [2] in the case of
the intersection of the sphere with a Weyl chamber (see also Urakawa [27,28]), we show
how to obtain from the class of eigenfunctions on the ball the principal eigenfunctions
of �. Then the asymptotically least favourable distributions can be derived and second
order asymptotically minimax estimates for the associated minimax problem ont� can
also be constructed in a manner analogous to Bickel’s work [5] in the one dimensional
case.

2. Asymptotically least favorable prior distributions on a bounded domain equal
to the intersection of a ball and the fundamental chamber of a reflection group

Here our goal is to study some of the important domains for order restricted statistical
inference and to obtain asymptotically least favorable prior distributions for such
domains. The four chosen, each of which is a subset of the unit ballB in R

n, are as
follows:

(i) S = {
x ∈ R

n: |x| � 1, x1 � 0
}
,

(ii) Q= {
x ∈ R

n: |x| � 1 andx1, . . . , xn � 0
}

and

(iii ) A= {
x ∈ R

n: |x| � 1 andx1 � x2 � · · · � xn},
(iv) B = {

x ∈ R
n: |x| � 1 andx1 � x2 � · · · � xn � 0

}
.

(4)

In order to achieve this, we first study the eigenfunctions on the unit ball; then a
general theorem about the eigenfunctions of a domain equal to the intersection of a ball
and the fundamental chamber of a reflection group is proved. The results for the domains
given in (4) and for other interesting domains of this type then follow as special cases.

In the following, we use the notationjν(r) = r−νJν(r), whereJν is the standard
Bessel function with indexν. We denote bykν,1 < kν,2 < · · · the positive zeroes ofJν
(hence also ofjν ). We recall thatjν(r) is an entire analytic function ofr , for everyν
(Bateman II, p. 4 [11]).

In order to obtain asymptotically minimax estimates fort� where� = C ∩ B,
we must have an expression for the principal eigenfunctionh and the corresponding
eigenvalueλ for �. The key idea of the proof is a symmetry argument also used in
a similar context for the sphere by Berard [1] and Berard and Besson [2] (see also
Urakawa [27,28]). It can be summarized as follows.

Let W denote a finite group generated by reflections ofR
n. Then we have a set of

hyperplanesZ , invariant underW , such that the orthogonal reflectionssH with H ∈ Z
generateW . The connected components ofR

n\⋃H∈Z H , the complement of all the
H ∈Z , are called fundamental domains or chambers forW .

Each of the bounded domainsS , Q, A, B arises in this way as the intersection of the
ball B with a fundamental chamberC of a certainW . Now the eigenfunctions of the
Dirichlet problem for the ballB can all be written as products of Bessel functions and
harmonic polynomials. Then one can prove that theW -anti-invariant elements ofL2(B)

restricted toC give exactlyL2(C ∩B). Using some known facts about zeroes of Bessel
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functions the problem now reduces to finding the anti-invariant harmonic polynomial of
least degree.

THEOREM 2.1. – Up to an arbitrary constant factor the solutions of the eigenvalue
problem for then dimensional ball with Dirichlet boundary condition are exactly:

f (x)= jν(|x|kν,m)hl(x), (5)

whereν = l + n−2
2 , l = 0,1,2, . . . , m = 1,2, . . . , wherehl ∈ Hl is a homogeneous

harmonic polynomial of degreel, and where kν,m is the mth zero of Jν . The
corresponding eigenvalue isk2

ν,m.
The principal eigenfunction is given byl = 0,m= 1, that is:

jn−2
2

(|x|kn−2
2 ,1

)
. (6)

Proof. –For the proof of (5) see Theorem 2.66, p. 107 of Folland [13].
The principal eigenfunction is the one given byl = 0,m= 1 as in (6) becausekν,1<

kν+1,1< kν,2< kν+1,2< · · · (see Watson, [30] p. 479 or Bateman II, [11] p. 59).✷
Now let us consider the general case. HenceforthW will denote a finite group

generated by reflections inRn, C a fundamental chamber forW . More precisely, let
Z be a finite set of hyperplanes inRn, such that the orthogonal reflectionsH with
respect to eachH ∈ Z preserves the setZ , and letW be the group generated by all
thesH (H ∈ Z).W is a finite Coxeter group; canonically associated withW are natural
numbersm1, . . . ,mn called the exponents ofW (cf. Bourbaki, [6] Ch. 5, § 6, No 2). The
connected components ofR

n\⋃H∈Z H are called chambers. It is well known (Bourbaki,
[6] Ch. 5, § 3, Thm. 1 (p. 74)) thatW is simply transitive on the set of chambers. Let us
fix one of them and call itC.

We choose a unit vectoreH orthogonal toH for eachH so that(x|eH ) > 0,∀x ∈ C.
We note that,

�(f ◦w)= (�f ) ◦w (7)

for all w ∈W and all functionsf , where� denotes the laplacian. This is clear since
eachw is orthogonal (since allsH are orthogonal). In particular, iff is harmonic, so is
f ◦w. We say that a functionf is invariant iff ◦w= f (∀w ∈W) and anti-invariant if
f ◦w= (detw)f (∀w ∈W).

Let1 be defined,∀x ∈ R
n, by:

1(x)= ∏
H∈Z

(x|eH ). (8)

THEOREM 2.2. – LetW , C and1 be defined as above and let�= B ∩C, whereB
is the unit ball inR

n. Then the least favorable prior density on� is given by

g�(x)= c�jν(|x|kν,1)2(1(x))2
, x ∈� (9)
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with ν =N+ n−2
2 (whereN = |Z|, the number of planes inZ and also equals the degree

of1) and

c� = 22Nπ−n/22(ν + 1)
(
Jν+1(kν,1)

)−2

(
n∏
l=1

(mi !)
)−1

wherem, . . . ,mn are the exponents ofW .

Proof. –The first part of the proof, the determination of the eigenfunctions of� can
be found in Berard [1] and Berard and Besson [2] together with Urakawa [27,28]. For
completeness we include it here.

We define the operatorAlt on functions by:

(Altf )(x)= 1

|W |
∑
w∈W

(detw)f (wx),

where|W | = # of elements inW . Considered onL2(B) it is the orthogonal projection
onto the subspaceL2(B)Alt of anti-invariant elements; (this is clear since it is idempotent
and self-adjoint and leaves fixed all anti-invariantf ’s). Alt also preserves eachHl

by (7). Therefore it also preserves eachL2(B)l,m, the subspace ofL2(B) spanned
by the functions (5) for fixedl,m. We denote the images ofAlt in these spaces by
L2(B)Alt

l,m andHAlt
l . We know that:L2(B) =⊕∞

l=0
⊕∞
m=1L

2(B)l,m. It follows therefore
that:L2(B)Alt

l,m =⊕∞
l=0

⊕∞
m=1L

2(B)Alt
l,m.

We claim that the restrictions to� of the functions inL2(B)Alt
l,m (l = 0,1, . . . ;

m = 1,2, . . .) spanL2(�) (and are still orthogonal to each other inL2(�) for l,m
different). For this it is now enough to see that the restriction map (fromB to �) is
(up to a scalar) a Hilbert space isomorphism ofL2(B)Alt ontoL2(�). For this we note
that (by the simple transitivity ofW on the chambers)∫

B

fg = ∑
w∈W

∫
w�

fg = ∑
w∈W

∫
�

f
(
w−1x

)
g
(
w−1x

)
dx = |W |

∫
�

f (x)g(x)dx,

and that the restriction map is surjective, since for anyϕ in L2(�) we have the anti-
invariant extensioñϕ on L2(B) defined uniquely bỹϕ(wx) = (detw)ϕ(x) for w ∈W
andx ∈ �. We now have a complete description of the Dirichlet eigenfunctions of�;
they are given by (5) with the restriction thath= hl ∈HAlt

l .
We now only have to find the smallestl such thatHAlt

l �= 0 (and a function in thisHAlt
l )

and to determine the constantc�.
By Bourbaki, [6] Ch. 5, § 5, Prop. 5 (p. 113),1, defined in (8), is the lowest degree

anti-invariant (with respect toW ) polynomial onR
n. Here is a possibly simpler proof of

this. To show1 is anti-invariant we have to show1 ◦ sH0 = −1 (∀H0 ∈Z). Now

1(sH0x)=
∏
H∈Z

(sH0x|eH )=
∏
H∈Z

(x|sH0eH ).

AsH runs through all hyperplanes inZ , sH0eH will run through alleH with possible
sign changes. It follows that1 ◦ sH0 = ±1. To determine the sign it suffices to look
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at one specialx ∈ R
n. We take anx that is very close to the planeH0 and far from all

other planes inZ ((x|eH0) is small;(x|eH ) is large forH �=H0). ThensH0x is close to
x, so(sH0x|eH ) for H �=H0 has the same sign as(x|eH ) but (sH0x|eH0)= (x|sH0eH0)=−(x|eH0). So1(sH0x)= −1(x), and1 ◦ sH0 = −1.

To show that1 is of lowest degree, following Bourbaki [6], we observe that any
semi-invariant is 0 on everyH ∈Z , hence divisible by(x|eH ), hence divisible by1.

In addition, it is well known that1 is harmonic. This can be seen as follows. Since
Alt commutes with� and1 is anti-invariant,�1 = �Alt(1) = Alt(�1), so�1 is
anti-invariant. But the degree of�1 is strictly less than deg(1), hence�1= 0.

Now from (5) and from the inequalities for thekν,m we see that the principal
eigenfunction is given by

|x|−νJν(|x|kν,1)1(x).
Once the principal eigenfunction has been found it suffices to use Theorem 1.1 to
determine the asymptotically least favorable prior density on� given by

g�(x)= c�|x|−2ν(Jν(|x|kν,1))2(1(x))2.
In order to determine the constantc�, since

∫
g�(x)dx = 1, we have, using polar

coordinates,x = rx′, x ∈4 with 4 denoting the unit sphere.

1

c�
=
∫
�

(|x|−νJν(|x|kν,1)1(x))2 dx

= 1

|W |
1∫

0

r
(
Jν(kν,1r)

)2
dr
∫
4

(
1(x′)

)2
dσ (x′).

By Watson [30, Section 18.1], the first integral on the right hand side equals
1
2(Jν+1(kν,1))

2. We denote the second integral byK� and we consider

L� =
∫
Rn

e−|x|2/2(1(x))2 dx.

Using polar coordinates again, we obtain

L� = 2ν2(ν + 1)K�.

On the other hand, Macdonald [24] pointed out that1 being a harmonic polynomial,
the integralL� is equal to the norm computed by R. Steinberg and written down in the
Appendix of Harder [15] namely

L� = (2π)n/2 |W |
2N

n∏
l=1

(ml!),

wherem1, . . . ,mn are the exponents ofW .
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Thus,

1

c�
= πn/2

22N2(N + n
2)

(
Jν+1(kν,1)

)2 n∏
l=1

(ml!)

with N + n
2 = ν + 1. ✷

Remark. – The exponentsml are given in Bourbaki [6] forW arising from a root
system in the tables on pp. 250–276 and forW of typeH3 orH4 on pp. 231–232. In the
only remaining case,W of typeI2(p), we have triviallym1 = 1,m2 = p− 1.

Let us now consider the special domains given in (4). For ann-vectorx = (xi, . . . , xn)
and a positivet let us introduce the following notation:

xt = (x1,t , x2,t , . . . , xn,t )

wherexi,t = xi
t
(1� i � n). Note that ifxt ∈� thenx ∈ t�.

COROLLARY 2.1. – The asymptotically least favorable prior densities fortQ, tA
and tB whereQ,A andB are defined in(4) are given respectively by

gtQ(x1)= cQt−n
[
|xt |− 3n−2

2 J 3n−2
2

(
k 3n−2

2 ,1|xt |
)
x1,t · · ·xn,t

]2

,

gtA(x)= 2− n(n−1)
2 cAt

−n
[
|xt |− n2−2

2 Jn2−2
2

(
kn2−2

2 ,1
|xt |)∏

i<j

(xi,t − xj,t )
]2

,

gtB(x)= 2−n(n−1)cBt
−n
[
|xt |− n−2

2 J 2n2+n−2
2

(
k 2n2+n−2

2 ,1
|xt |) n∏

i=1

xi,t
∏
i<j

(xi,t − xj,t )2
]2

. (10)

Proof. –By Theorem 1.1 it suffices to use Theorem 2.2 and to determine the principal
eigenfunction for each domain.

The case ofA, for example, is the special case whereZ is the set of all hyperplanes
xi −xj = 0, (i > j). HereN = |Z| = n(n− 1)/2, and1(x)= 2−N/2∏

i<j (xi −xj ). (So
ν = (n2 − 2)/2.)

The case whereB = {x ∈ R
n; |x| � 1 andx1 � x2 � · · · � xn > 0} corresponds to

Z , the set of allxi − xj = 0, xi + xj = 0, (i > j), xi = 0. SoN = |Z| = n2, and
1(x)= 2−n(n−1)/2∏n

i=1 xi
∏
i<j (x

2
i − x2

j ).

Analogous arguments work forQ andS . The explicit values of the constantscS ,
cQ, cA andcB can be obtained in a similar fashion by specifying the parameters in the
formula forc� given in Theorem 2.2. ✷

Remark. – Chapter VI, § 4 of Bourbaki [6] contains a list of all possibleW ’s (and
C ’s). For each case we can write down explicit formulas forgt�(x) where�=C ∩B.

3. Construction of asymptotically minimax estimators

As in Section 2, we consider domains�= C∩B whereC is the fundamental chamber
for a finite group generated by reflections andB is the unit ball inR

n. We denote byλ
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the smallest eigenvalue of the Dirichlet eigenvalue problem (2) for�. Our goal is to
construct a family of estimatorsδ∗t (x) associated to the domainst� (t > 0) which is
asymptotically minimax in the sense that

sup
ω∈t�

∣∣∣∣R(ω, δ∗t )−
(
n− 4λ

t2

)∣∣∣∣= o
(

1

t2

)
. (11)

The essential idea of the proof that an estimatorδ∗t satisfies (11) involves expressing
the estimator as

δ∗t (x)= x −ψ(t)(x) (12)

and substituting this expression in Stein’s unbiased estimate of the risk:

R(ω, δ∗t )= n−
∫
Rn

(
2divψ(t)(x)− ∣∣ψ(t)(ω)∣∣2)φn(x − ω)dx, (13)

where div denotes divergence,|ψ(t)(ω)| denotes the norm inRn andφn(x), the standard
normaln-dimensional density function.

Clearly the Bayes estimator

δt (x)= x + grad log(gt ∗ φn)
associated to the “approximately least favorable density”gt defined in Theorem 1.1 and
explicitly computed in Theorem 2.2 does not have the property defined by (11), because
as noted by Bickel [5] and Berkin and Levit [4], sincev� vanishes on the boundary of
�, the behaviour of∇v�/v� is unstable near the boundary. This renders it necessary to
constructδ∗t , a suitable modification ofδt , by considering an appropriate neighbourhood
�(t) of � and analogously to Bickel’s work [5] in the one dimensional case, modifying
v�(x) from Theorem 1.1 inside and outside�(t) in such a way that we can prove that the
following error terms are uniformly small:

R1t = max
ω∈t�

∣∣∣∣
∫
t�(t)

(
2divψ(t)(x)− ∥∥ψ(t)(x)∥∥2 − 4λ

t2

)
φn(x − ω)dx

∣∣∣∣= o
(

1

t2

)
, (14)

R2t = max
ω∈t�

∣∣∣∣
∫

(t�(t))C

(
2divψ(t)(x)− ∥∥ψ(t)(x)∥∥2 − 4λ

t2

)
φn(x −ω)dx

∣∣∣∣= o
(

1

t2

)
. (15)

We proceed to construct�(t) and δ∗t as follows. In order to simplify notation, let
ei (1 � i �N) denote the vectorseH of (8) arranged in some order. Let us choose a unit
vectoru ∈ C so that(u|ei)� 0 ∀i and let us choosek such thatk � 1/mini(u|ei). Let
at < 1 satisfyingat ↓ 0 andtat → ∞. Now letbt be such that 0< bt < at/(2(1 + (k +
1)at )) andb−4

t

∫
|x|> tat2 φn(x)dx → 0.

Let |x| = r and let

�= {x ∈ C: |x| � 1
}
,

�t = {x ∈ C: r < 1− bt and(x|ei) > bt (1 � i �N)
}
,

�(t)= (1+ (k + 1)at
)
�t − atku.
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It is easy to see that, ifω ∈� andx ∈ (�(t))C , then|x − ω|> at
2 .

We defineψ , for x ∈� only, by

ψ(x)= −∇g�(x)
g�(x)

,

whereg� is as in Theorem 2.2. From�g�(x)= −λg�(x) it follows that

2divψ(x)− ∣∣ψ(x)∣∣2 = 4λ (16)

for all x in �.
Using the auxiliary functions

ϕ0(y)= kν,1j
′
ν(kν,1y)

jν(kν,1y)
, (0� y < 1),

ϕ(y)= 1

y
, (0< y),

the explicit formula (9) gives

ψ(x)= −2ϕ0(r)
x

r
− 2

∑
i

ϕ
(
(x|ei))ei .

We modifyψ(x) near the boundary of� and extend its definition toRn by first setting

ϕ0,t (y)=
{
ϕ0(y), if 0 � y � 1− bt ,
ϕ0(1− bt )+ ϕ′

0(1− bt )(y − (1− bt )), if y > 1− bt ,
ϕt (y)=

{
ϕ(y)(= 1

y
), if y � bt ,

ϕ(bt)+ ϕ′(bt )(y − bt ), if y < bt ,

and then forx ∈ R
n andr = |x|

ψ0,t (x)= −2ϕ0,t (r)
x

r
,

ψi,t (x)= −2ϕt
(
(x|ei))ei,

ψt (x)=ψ0,t (x)+
∑
i

ψi,t (x).

Finally, we define,

ψ(t)(x)= 1

(1+ (k+ 1)at )t
ψt

(
1

(1+ (k+ 1)at )t
(x + atku)

)
. (17)

THEOREM 3.1. – An asymptotically minimax estimatorδ∗t (x) which satisfies(11)
can be defined by letting

δ∗t (x)= x −ψ(t)(x), (18)

whereψ(t) is defined in(17).
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Proof. –We will use the following properties in the proof.
(a) 2divψ(t)(x) − ‖ψ(t)(x)‖2 = 4λ

(1+(k+1)at)2t2
for x ∈ t�(t). This follows from (12)

and from the fact thatψt =ψ on�t .
(b) 2divψt(x)− ‖ψt(x)‖2 � c

b4
t

(r2 + 1) for somec independent ofx andt .

To see this, we first get by direct computation

divψot(x)= −2
(
ϕ′
ot (r)+ ϕot(r)

n− 1

r

)
,

divψit (x)= −2ϕ′
t

(
(x|ei)),∣∣ψot(x)∣∣2 = 4ϕot(r)
2,∣∣ψit(x)∣∣2 = 4ϕt

(
(x|ei))2.

Then we observe that the functionsϕ′
t (y), ϕt (y) (for y ∈ R) and ϕ′

ot(y), ϕot (y) (for
y � 0) are all majorized by

c

b2
t

(y + 1)

for some constantc. This is obvious forϕ′
t andϕt ; to prove it for ϕ′

ot we note that,
kν,1 being a simple zero and the smallest positive zero ofjν , we have, for 0< y < 1,
ϕ′

0(y)= − 1
(1−y)2 + a(y) for a smooth functiona(y) on [0,1]. From this the estimate for

ϕ′
ot and then forϕot follows and (b) is then an immediate consequence.
Now, to prove the theorem, we have to show that assertions (14) and (15) are true. It

is easy to see that

(
4λ

(1+ (k+ 1)at )2t2
− 4λ

t2

) ∫
t�(t)

φn(x −ω)dx = o
(

1

t2

)
,

and this implies (14) by (a). So it is enough to prove thatR2t in (15) is uniformly small.
In other words, we have to prove that

max
ω∈t�

∣∣∣∣
∫

(t�(t))c

{
1

(1+ (k+ 1)at )2
(
2divψt − ‖ψt‖2)

×
(

1

(1+ (k+ 1)at )t
(x + atku)

)
− 4λ

}
φn(x −ω)dx

∣∣∣∣= o(1).

(19)

As previously observed ifx ∈ (t�(t))c andω ∈ t�, then|x − ω|> tat
2 . Changing the

variablez= x −ω, and applying (b), we find that the left hand side of (19) is majorized
by

c′′

b4
t

∫
|z|> tat2

(|z|2 + c)φn(z)dz,
and this is really o(1) by the hypotheses aboutat andbt . ✷
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