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ABSTRACT. — Inspired by previous results on asymptotic minimax estimation for a ball of
increasing radius ifR"”, we study the analogous problem for domains of importance in order-
restricted inference. In particular, we study domains that are formed by the intersection of &
ball and a fundamental chamber of a finite reflection groug’'inWe show (1) how to obtain
the principal eigenfunction of such a domain and asymptotically, the related least favourable
distribution for the associated minimax problem, (2) that the order and positivity constraints in
the usual statistical problems generate such chambers and (3) and in an analogous way to t
work of Bickel [5] in the one dimensional case, how to find the asymptotic minimax risk and the
second order asymptotic minimax estimate for such a doma®@02 Editions scientifiques et
médicales Elsevier SAS
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RESUME. — Inspiré par les résultats existants sur I'estimation asymptotique minimax pour une
boule de rayon croissant daRg, nous étudions le probléme analogue pour certains domaines
importants en inférence avec des contraintes d'ordre. Plus particulierement, nous étudions I
domaines formés par l'intersection d’une boule et d’'une chambre fondamentale d'un groupe d
réflexions dan®”. Nous montrons (1) comment obtenir la fonction propre principale d’un tel
domaine et la lom priori la moins favorable asymptotiquement pour le probléme du minimax
associé, (2) que les contraintes d'ordre et de positivité dans les problemes statistiques usue
engendrent de telles chambres et (3) d’'une maniére analogue au travail de Bickel [5] dan
le cas unidimensionnel, comment trouver le risque asymptotiquement minimax et I'estimateu
asymptotiqguement minimax du second ordre sur un tel domaif@02 Editions scientifiques et
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1. Introduction

In many parametric statistical estimation problems, there is definite prior information
concerning the values of a parameter vec¢ioy. There may be bounds on the individual
components(w); such as “the norm ofv is at mostc” or “a subset of thew; are
non-negative” or the @;’s are non-increasing in”. Many computationally feasible
estimation methods have been developed to capitalize on such information. How coul
one theoretically compare the performance of various possible estimators when suc
prior information is present? One common, admittedly conservative, approach is the
worst-case analysis: given some error measure, compute the maximum expected err
over the restricted parameter space, and then seek the estimator that minimizes tf
maximum risk. The resulting best or minimax risk provides a benchmark against which
to measure other estimators.

Here we recall various definitions of statistical decision theory associated with
the estimation of an unknown parameter veciolgiven an observation of € X,
where X is a random vector whose distribution depends on the parameter?,
the parameter space. A solution consists of a nonrandomized estimator or decisio
procedures, which is a measurable function from the sample spéce- 2. Let A
denote the space of all possible estimates. A risk funci@b, ) characterizes the
performance of a decision procedutefor each value of the parameter. The risk
function is usually defined in terms of an underlying loss functiog, ») which
mapsA x @ — R* U {0} (whereR™" is the positive real line). To be able to confine
our attention to nonrandomized estimators, it will be assumed that the loss functior
is convex in§ and that4 and Q are also convex. The loss function will usually be
assumed to equal the quadratic loss functjos; — w;)2. The risk of an estimator
3 when w is true, R(§, w), is then the average loss incurred from usifigthat is,

RS, w)=E,L(§(X), w). An estimator* is minimax for the above problem, if

SUPR (8", w) < SUPR(S, w)

we we
for all § € A. We will let p(2) denote the minimax risk or2; i.e., p(Q) =
infse 4 suUp,. R(w, 8). Note that if2 = R” then for the normal mean estimation problem
p(R") =n.

Minimax problems are often solved by considering the corresponding Bayes prob-
lems. A distribution or prior probability measureis specified on the parameter space
2, and a measure of the performance of a procedusegiven by its Bayes risk

r(8,m) :/R(S, )7 (dw).
Q

Now §, is called the Bayes procedure with respect to the prior probability measifire

8, minimizes the Bayes risk. The Bayes riskr) of a distribution or prior probability
measurer on Q is defined as () = r(8,, ). A distribution or prior probability
measurer™ is “least favorable” if its Bayes risk is greater than or equal to that of
any other distribution. Subject to the decision problem satisfying sufficient regularity
conditions, a least favorable prior distribution exists and the corresponding Bayes
procedure is minimax (see Wald [29], Ferguson [12], Brown [7], and Kempthorne [18]).
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Here we consider the normal mean estimation problem; thaX its a N, (w, I,,)
random vector where represents the dimension of the spakethe (n x »n) identity
matrix and let us assume that the vectois contained in the parameter spaeeavhich
is a closed bounded convex domairi.

Casella and Strawderman [9] first found exact minimax estimates for intervals of the
form [—¢, ¢] for small ¢ for this problem in one dimension. (See also Zinzius [31].)
Donoho, Liu and MacGibbon [10] studied minimax estimates and affine-minimax
estimates for the problem of estimating the mean of a standard Gaussian shift whe
the mean is known to lie in an orthosymmetric, convex and quadratically convex sei
in £5. However, for many closed bounded domaia®f R” (satisfyingQ = int2), the
finding of exact minimax solutions is analytically intractable. A more soluble analytical
problem involves the study of asymptotically minimax estimates; that is, we can considel
the asymptotic behaviour of the minimax risk

p(tQ) = ir61f SUPE,L(8(X),w)

wet

for positive + and the construction of such asymptotically minimax estimators as
t — 00.

The connection between asymptotic minimax risk and the principal eigenvalue of
an elliptic equation was first elaborated in a series of papers by Levit [19-21] and
Berkin and Levit [4] which studied asymptotic second-order minimax estimators under a
general class of loss functions in Gaussian and locally asymptotic Gaussian settings, at
connected this problem with the principal eigenvalue of the Laplace (or more generally
second order uniformly elliptic) equation in the domain in which the parameter lies.
Bickel [5] independently derived the results for intervals and balls in the Gaussian setting
for squared error loss, obtaining explicit second-order asymptotically minimax estimates
by suitably rescaling eigenfunctions of the sphere. Johnstone and MacGibbon [16,17
related the problem of finding asymptotic minimax estimates of a bounded Poissor
vector to the Gaussian one.

The solution to the Dirichlet problem is easily seen to be related to asymptotically
minimax estimation of a normal mean vector (see, e.g., Berkin and Levit [4], Levit [19—
21], Johnstone and MacGibbon [17]). Essentially, finding a minimax estimator with
respect to a density on €2 is equivalent to minimizing the Fisher informatidrg /) =
[ £7YV f|2. Since, Fisher informatiod and the energy functiond in the classical
Dirichlet problem are related by*(v) = I (v?)/4 the problem of minimax estimation
becomes a search for principal eigenfunctions of the laplacian.

More precisely, using the solution to the classical Dirichlet problem for a bounded
domain (not too irregularf2 in R" (see, e.g., Gilbarg and Trudinger [14]), we have
the following general theorem (for a discussion of the proof and applications, see, e.g.
Berkin and Levit [4], Johnstone and MacGibbon [16,17]).

THEOREM 1.1. — For Q as above and positive,
() The minimax risk for the n-dimensional problem just described is

nf SUPE, Y [8:(X) — wi]®=n — 42(Q) + 0(17?), 1)

p(2) =
3eD yerq i1



196 A. KORANYI, K.B. MACGIBBON / Ann. I. H. Poincaré — PR 38 (2002) 193-206

where($2) denotes the minimum eigenvalue of the Laplace operater >} 8°/dw?
on g, i.e., the smallest for which the equation

Av(w) = —iv(w), weintL,
(2)
v=0, weEIR

has a non-zero solution. The eigenspace correspondings®) is one-dimensional, and
the corresponding eigenfunctiag, (w) = v(w, ) (or —vg(w)) is strictly positive ort2.
Assume thatg, is normalised so thaf, v3 = 1.

(i) Let G7(dw) denote a least favorable prior distribution for the regide, =
Q2 (t > 0) and G1',(dw) the corresponding prior rescaled to. If we letg: (w) = vé(a))
forw € Q andg;(w) = 0for w ¢ 2, then the probability measu@;(dw) = g1(w) dw is
the weak limit of th¢rescaled least favorable distributions;}',. If G, (dw) represents
the distribution corresponding t67;(dw) scaled up tor2, that is, whose density is
given byg,(x) =t "gq(xt™1) where go(w) = g1(w), then theG, are approximately
least favorable in the following sense

p(t) =r(G,) +0o(t72).

The proof depends on an easily proved identity, called Brown's identity (see
Brown [7], Bickel [5], Brown and Gajek [8]) which says that for any prior distribution
G one has

8¢ (x) =x +gradlogg * ¢n), 3

where g is the density ofG (which is set to 0 outside of its domain of definition
Q) and¢, represents the standard normatlimensional density function andG) =
n—1(g*d¢,), wherel(g % ¢,) is the Fisher information.

So far, the only known explicit solutions for the asymptotically minimax estimation
of a bounded Gaussian vector were obtained on the sphere, an orthosymmetric domai
or on rectangles, which are products of orthosymmetric domains. However, muct
interesting statistical research has also occurred in parameter estimation under positivi
or order constraints (for an overview of this subject, see Robertson, Wright, and
Dykstra [25]). For example, the estimation of a Gaussian vector under order constraint
on the components has been shown to be a necessary part of the solution to sor
statistical problems in toxicology experiments (Schoenfeld [26]).

The prior information aboub for such a problem could consist of it being contained in
some domairf2 C R” such as the domain given by the inequaliti@s> w, > - -- > w,
orwi = wy = -+ = w, = 0. Such inequalities arise in many situations in order restricted
inference (Robertson et al. [25]). These two domains are well known as the standar
fundamental domains (chambers) for certain finite groups generated by reflections (th
groups of permutations, respectively, signed permutations of the coordinates). So, wit
the same effort, we may ask the question about the fundamental chambeian
arbitrary finite reflection groufv. We cannot handle these domains directly, one reason
being that Theorem 1.1 works smoothly only for bounded dom@inBut what can be
done, and is still useful, is to consid@r= C N B whereB is the unit ball ofR”. Using a
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symmetry argument used before by Berard [1] and Berard and Besson [2] in the case
the intersection of the sphere with a Weyl chamber (see also Urakawa [27,28]), we sho
how to obtain from the class of eigenfunctions on the ball the principal eigenfunctions
of Q. Then the asymptotically least favourable distributions can be derived and secon
order asymptotically minimax estimates for the associated minimax probletf2 oan

also be constructed in a manner analogous to Bickel's work [5] in the one dimensiona
case.

2. Asymptotically least favorable prior distributions on a bounded domain equal
to the intersection of a ball and the fundamental chamber of a reflection group

Here our goal is to study some of the important domains for order restricted statistica
inference and to obtain asymptotically least favorable prior distributions for such
domains. The four chosen, each of which is a subset of the unitBoail R”, are as
follows:

(i) S={xeR" |x|<1, x1 >0},

(i) 9Q={xeR" |x|<landxi,...,x, >0} and @
(i) A={xeR" |x|<landx;>x;>--->x,},

(iv) B={xeR" |x|<landx;>x;>--->x, >0}

In order to achieve this, we first study the eigenfunctions on the unit ball; then a
general theorem about the eigenfunctions of a domain equal to the intersection of a ba
and the fundamental chamber of a reflection group is proved. The results for the domair
given in (4) and for other interesting domains of this type then follow as special cases.

In the following, we use the notation, (r) = r~"J,(r), where J, is the standard
Bessel function with index. We denote by, ; < k, 2 < --- the positive zeroes af,
(hence also ofj,). We recall thatj, () is an entire analytic function of, for everyv
(Bateman I, p. 4 [11]).

In order to obtain asymptotically minimax estimates fét where @ = C N B,
we must have an expression for the principal eigenfuncticend the corresponding
eigenvaluei for . The key idea of the proof is a symmetry argument also used in
a similar context for the sphere by Berard [1] and Berard and Besson [2] (see alst
Urakawa [27,28]). It can be summarized as follows.

Let W denote a finite group generated by reflectiongRdf Then we have a set of
hyperplanesz, invariant undev, such that the orthogonal reflections with H € Z
generateW. The connected components &f\ U,.z H, the complement of all the
H € Z, are called fundamental domains or chambersior

Each of the bounded domaiss Q, A, B arises in this way as the intersection of the
ball B with a fundamental chamber of a certainW. Now the eigenfunctions of the
Dirichlet problem for the ballB can all be written as products of Bessel functions and
harmonic polynomials. Then one can prove thatWheanti-invariant elements af?(B)
restricted toC give exactlyL?(C N B). Using some known facts about zeroes of Bessel
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functions the problem now reduces to finding the anti-invariant harmonic polynomial of
least degree.

THEOREM 2.1. — Up to an arbitrary constant factor the solutions of the eigenvalue
problem for then dimensional ball with Dirichlet boundary condition are exactly

F @) = ju(xlkym)hi(x), ®)

wherev =1 + "—;2 1=012..., m=12,..., whereh; € H, is a homogeneous
harmonic polynomial of degreé¢, and wherek,, is the mth zero of J,. The
corresponding eigenvalue i§ ,,.

The principal eigenfunction is given lby=0,m = 1, that is

jn_52(|x|k%,1)~ (6)

Proof. —For the proof of (5) see Theorem 2.66, p. 107 of Folland [13].
The principal eigenfunction is the one given by 0, m =1 as in (6) becausk, ; <
kyi11 <ky2 <kyy12<---(See Watson, [30] p. 479 or Bateman I, [11] p. 59)1

Now let us consider the general case. Hencefd#thwill denote a finite group
generated by reflections R", C a fundamental chamber fd¥. More precisely, let
Z be a finite set of hyperplanes iR", such that the orthogonal reflectiogn with
respect to eactf € Z preserves the sef, and letW be the group generated by all
thesy (H € Z). W is a finite Coxeter group; canonically associated Withare natural
numbersny, ..., m, called the exponents &% (cf. Bourbaki, [6] Ch. 5, § 6, No 2). The
connected componentsBf\ |, .z H are called chambers. It is well known (Bourbaki,
[6] Ch. 5, 8 3, Thm. 1 (p. 74)) tha¥ is simply transitive on the set of chambers. Let us
fix one of them and call iC.

We choose a unit vectaty orthogonal toH for eachH so that(x|ey) > 0,Vx € C.
We note that,

A(fow)=(Af)ow (7

for all w € W and all functionsf, where A denotes the laplacian. This is clear since
eachw is orthogonal (since ally are orthogonal). In particular, if is harmonic, so is
f ow. We say that a functiorf is invariant if f o w = f (Vw € W) and anti-invariant if
fow=(detw) f Vw € W).

Let IT be definedyx € R", by:

M) =[] xlen). (8

HeZ

THEOREM 2.2.— LetW, C andIl be defined as above and Bt= B N C, whereB
is the unit ball inR”". Then the least favorable prior density énis given by

ga(x) = cajv(Ixlk, D3(T(x))°, xeQ (9)
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withv = N 4 5= (whereN | Z|, the number of planes i and also equals the degree
of IT) and
" -1
cq=2*"7""’T (v + 1)(Jv+1(kv,1))‘2<H(mi!)>
=1
wherem, ..., m, are the exponents a7 .

Proof. —The first part of the proof, the determination of the eigenfunction® can
be found in Berard [1] and Berard and Besson [2] together with Urakawa [27,28]. For
completeness we include it here.

We define the operatdXlt on functions by:

(Altf)(x) = = > (detw) f (wx),
IWI wew

where|W| = # of elements inW. Considered or.2(B) it is the orthogonal projection
onto the subspack?(B)A" of anti-invariant elements; (this is clear since it is idempotent
and self-adjoint and leaves fixed all anti-invariafis). Alt also preserves eacH,
by (7). Therefore it also preserves eafR(B),,, the subspace of.?(B) spanned
by the functions (5) for fixed, m. We denote the images &t in these spaces by
L2(B)P and HM. We know that:L?(B) = @72 @y L3(B);,. It follows therefore
that: L2(B)A|t @[ 0@}" 1L2(B)A|t

We claim that the restrictions t& of the functions inL2(B), (1 =0,1,...;
m=1,2,...) spanL?(Q) (and are still orthogonal to each other 1rf(Q) for I, m
different). For this it is now enough to see that the restriction map (fBoto ) is
(up to a scalar) a Hilbert space isomorphismZéf B)A' onto L2(2). For this we note
that (by the simple transitivity o on the chambers)

/fg—Z/fg—Z/fw x)g(w ) dx |W|/f<x>g(x>dx

we WwQ we W

and that the restriction map is surjective, since for anipn L2(Q) we have the anti-
invariant extensiorp on L?(B) defined uniquely bys(wx) = (detw)e(x) for w e W
andx € Q. We now have a complete description of the Dirichlet eigenfunctionQ;of
they are given by (5) with the restriction that= h; € H.

We now only have to find the smalldssuch that £ 0 (and a function in thig{/")
and to determine the constaty.

By Bourbaki, [6] Ch. 5, § 5, Prop. 5 (p. 1131, defined in (8), is the lowest degree
anti-invariant (with respect t¥#) polynomial onR”". Here is a possibly simpler proof of
this. To showl1 is anti-invariant we have to shol o sy, = —IT (VHp € Z). Now

M(spyx) = H (SHpXlen) = H (xX|SHer)-
HeZ HeZ

As H runs through all hyperplanes &, sy,en Will run through alley with possible
sign changes. It follows thdl o sy, = +I1. To determine the sign it suffices to look
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at one speciak € R". We take arx that is very close to the plang, and far from all
other planes irZ ((x|eq,) is small; (x|ey) is large forH # Hp). Thensy,x is close to
X, S0(sy,xlen) for H # Hy has the same sign &s|ey) but (spyx|en,) = (x|sp,en,) =
—(x|eny). SO (sp,x) = —I1(x), andIl o sy, = —I1.

To show thatlIT is of lowest degree, following Bourbaki [6], we observe that any
semi-invariant is 0 on ever$f € Z, hence divisible by(x|ey), hence divisible byT.

In addition, it is well known thafTl is harmonic. This can be seen as follows. Since
Alt commutes withA and Tl is anti-invariant, ATI = AAIt(IT) = Alt(AII), so AIT is
anti-invariant. But the degree &T1 is strictly less than de@l), henceATIl = 0.

Now from (5) and from the inequalities for the,,, we see that the principal
eigenfunction is given by

x| ™ Jy (Jx Ky 1) TT ().
Once the principal eigenfunction has been found it suffices to use Theorem 1.1 tc
determine the asymptotically least favorable prior density2agiven by

ga(x) = calx| (J,(Ix Ik, 1) 2 (TT(x)) .

In order to determine the constan, since [ gqo(x)dx = 1, we have, using polar
coordinatesy = rx’, x € X with X denoting the unit sphere.

1
== [ (i ek @)

cQ
Q

=

1
1
=W/r(Jv(kwlr))zdr/(H(x/))zda(x/).
0

By Watson [30, Section 18.1], the first integral on the right hand side equals
%(]Hl(kv’l))z. We denote the second integral Ky, and we consider

Lo :/e"xlz/z(l'[(x))zdx.
Rn
Using polar coordinates again, we obtain
Lo=2"T(v+1Kq.
On the other hand, Macdonald [24] pointed out thalbeing a harmonic polynomial,

the integralLq, is equal to the norm computed by R. Steinberg and written down in the
Appendix of Harder [15] namely

2l WI T
Lo = 2m)"* = [Tmi)),
=1

wheremyi, ..., m, are the exponents d¥.
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Thus,
1 7'[”/2

2 n
o~ v p ) Hemd

=1
with N + 2 =v+1. O

Remark— The exponents:; are given in Bourbaki [6] forW arising from a root
system in the tables on pp. 250-276 andWoof type Hs or H, on pp. 231-232. In the
only remaining case&y of type I,(p), we have triviallym; =1, m, = p — 1.

Let us now consider the special domains given in (4). For-aactorx = (x;, ..., x,)
and a positive let us introduce the following notation:

Xt = (xl,h X2tsevns xn,t)

wherex; ; = °f (1<i <n). Note that ifx; € @ thenx € <.

COROLLARY 2.1.— The asymptotically least favorable prior densities f@, t.A
and:B whereQ, A and B are defined i(4) are given respectively by

3n—-2

2
gro(x1) =cot™ [lx,| 2 an74 (k3nT271|xz|)xl,l"'xn,l:| )

n(n— nz— 2
fa0) =2 P et 1 iz () T = 00
i<j
n 2
gB(x)=2"""Vegt™ l|xt|—"—22 Jazsus (Kazguz  Porl) [T i [T s —xj,t)ﬂ . (20)
i=1 i<j

Proof. —By Theorem 1.1 it suffices to use Theorem 2.2 and to determine the principal
eigenfunction for each domain.

The case of4, for example, is the special case whéefas the set of all hyperplanes
x;—x;=0,(i > j). HereN =|Z| =n(n — 1)/2, andIT (x) = 2~ V2], _; (x; — x;). (So
v=(n?-2)/2)

The case wherd8 = {x e R"; |x| <1 andx; > x, > --- > x,, > 0} corresponds to
Z, the set of allx; — x; =0,x; + x; =0,( > j),x; =0. SON = |Z| = n?, and
M(x) = 27"V 6 [T (e — x2).

Analogous arguments work fa@ and S. The explicit values of the constants,
co, c4 andcpg can be obtained in a similar fashion by specifying the parameters in the
formula forcg given in Theorem 2.2. O

Remark— Chapter VI, 8§ 4 of Bourbaki [6] contains a list of all possilii€s (and
C'’s). For each case we can write down explicit formulasdies(x) where2 = C N B.
3. Construction of asymptotically minimax estimators

As in Section 2, we consider domaifts= C N B whereC is the fundamental chamber
for a finite group generated by reflections aBds the unit ball inR”. We denote by
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the smallest eigenvalue of the Dirichlet eigenvalue problem (2X¥oOur goal is to
construct a family of estimator&(x) associated to the domain (¢ > 0) which is
asymptotically minimax in the sense that

4\ 1

The essential idea of the proof that an estimafosatisfies (11) involves expressing
the estimator as

sup

wet

5 =x =y (12)
and substituting this expression in Stein’s unbiased estimate of the risk:

R(w,8)=n— /(Zdiw//(”(x) — |w<’>(w)|2)¢n(x — w) dx, (13)

Rn

where div denotes divergende; ) (w)| denotes the norm iR” andé, (x), the standard
normaln-dimensional density function.
Clearly the Bayes estimator

8;(x) = x + gradlogg; * ¢,)

associated to the “approximately least favorable dengityfefined in Theorem 1.1 and
explicitly computed in Theorem 2.2 does not have the property defined by (11), becaus
as noted by Bickel [5] and Berkin and Levit [4], sineg vanishes on the boundary of

Q, the behaviour oWV vq /vg is unstable near the boundary. This renders it necessary to
constructs;’, a suitable modification af;, by considering an appropriate neighbourhood
Q® of Q and analogously to Bickel's work [5] in the one dimensional case, modifying
vo(x) from Theorem 1.1 inside and outsi€¥” in such a way that we can prove that the
following error terms are uniformly small:

: t t 4 1
Ru=may [ (2dvp 000~ 00wl - 5 )t o =o( ). a9

Q@

4 1
Ry =ma / 2divy O (x) — [y O W) = = gu(x —w)dx| =0( = ). (15)
et 12 12
Q¢
We proceed to constru&®” and §; as follows. In order to simplify notation, let
e; (1<i < N) denote the vectorsy of (8) arranged in some order. Let us choose a unit
vectoru € C so that(u|e;) > 0 Vi and let us choosg such thatk > 1/min; (ule;). Let
a; < 1 satisfyinga; | 0 andra, — co. Now let b, be such that G b, < a,/(2(1+ (k +
Day)) andb;* [\t ¢u(x) dx — 0.
Let|x| =r and let
Q={xeC: |x| <1},
Q= {x eC:r<l-—b;and(xle;) > b, (1<i < N)},

QY = (1+ (k + Da,)Q — a/ku.
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Itis easy to see that, i € © andx € ("), then|x — w| > %.
We definey, for x € Q only, by

T = 82
ga(x)

wheregg is as in Theorem 2.2. FromMigg (x) = —Agq(x) it follows that
2divi (x) — [F(x)|* = 4n (16)

for all x in Q.
Using the auxiliary functions

11'6 (ky,1y)
’ jv (kv,ly) '

1
() =—, O<y),
y

o(y) =k, 0<y <],

the explicit formula (9) gives
T ==2p0(r) = = 2" p((xlen) e

We modify (x) near the boundary & and extend its definition t&” by first setting

Y01 = go(d—b) +@p(L—b)(y— (A—by), ify>1—b,
_Joe(=D, if y>b,,
w0 {<p<b,)+<yp/(b,)<y—b,), if y <by,

and then forx € R andr = |x|
Vo () = =2¢0,(r) -,
Vi (x) = —2¢, ((X|ei))€i,
Y (0) = Yo, (x) + D Wi (x).

Finally, we define,

1 1
) _
V= ke Da ( At G+ Dapr ™t “”“”) ' (17)

THEOREM 3.1. — An asymptotically minimax estimatéf (x) which satisfieq11)
can be defined by letting

S x)=x -y ), (18)
wherey ) is defined in(17).
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Proof. —We will use the following properties in the proof.
(@) 2divy O (x) — v O x)|1? = M‘W for x € tQ®. This follows from (12)
and from the fact thaf;, = w onQ,.

(b) 2divyy, (x) — [, ()% < < < (r? + 1) for somec independent of and:.
To see this, we first get by direct computation

div ey, (x) = —2(<p;, ")+ g ()=

div i, (x) = —2¢; ((x]e;)),
Wor (0] = 4r ()2,
[ () |* = 4 ((xlen)) .
Then we observe that the functiogs(y), ¢;(y) (for y € R) and ¢,,(y), o (y) (for
y > 0) are all majorized by

C
— 1
btz(y+ )

for some constant. This is obvious forg; and ¢,; to prove it for¢,, we note that,
k,1 being a simple zero and the smallest positive zerg,pfve have, for O< y < 1,
vo(y) = — y)2 + a(y) for a smooth functior:(y) on [0, 1]. From this the estimate for
¢,. and then fory,, follows and (b) is then an immediate consequence.
Now, to prove the theorem, we have to show that assertions (14) and (15) are true. |
is easy to see that

4r 4. 1
(<1+ (k+Dapz? 72> / ¢n(x — w) dx =o<t—2>,

QM

and this implies (14) by (a). So it is enough to prove tRatin (15) is uniformly small.
In other words, we have to prove that

1

- H _ 2
magﬂ / {(H(kﬂ)al)z@dwz Iy 1%)
tQ0)e (19)

- ku) ) —4x ¢ ¢, (x —w) dx| = 0(1).
g (<1+<k+1)a,)r(x+“’ ”)> }¢ (e ‘ o

As previously observed if € (1Q2,))° andw € 1L, then|x — w| > . Changing the
variablez = x — w, and applying (b), we find that the left hand side of (19) is majorized
by

b / (12124 ) (2) .

1ar

lz|> -2

and this is really @l) by the hypotheses aboutandb,. O
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