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1. Introduction

In this paper we provide a new, independent proof of the famous result of Yau [19]
which states that the logarithmic Sobolev constant of a spin exchange dynamics in a bo
of sideL of Z¢, reversible w.r.t. the canonical Gibbs measure of a finite range lattice gas,
grows like L2, provided that the corresponding grand canonical Gibbs measure satisfie:
a suitable “high temperature” condition. We thus complete the program that was begui
in [10] were a similar scaling law was proved for the inverse spectral gap.

The problem of computing the relaxation time of stochastic Monte Carlo algorithms
for models of classical spin systemsZii has attracted in the last years considerable
attention and many new rigorous techniques have been developed giving rise to nic
progresses in probability theory and statistical mechanics. If, for simplicity, we confine
ourselves tat1 (or 0—1 in the lattice gas picture) spins, the two most studied random
dynamics have been non-conservative Glauber type algorithms, in which a spin a
a time flips its value with a rate satisfying the detailed balance condition w.r.t. the
grand canonical Gibbs measure, and conservative Kawasaki dynamics in which neare
neighbors spins exchange their values with a rate satisfying the detailed balanc
condition w.r.t. the canonical Gibbs measure.

For Glauber dynamics the general picture is relatively clear for a wide class of models
both in the one phase and in the phase coexistence region with the notable exception
the critical point (see e.g. [16] and references therein).

For Kawasaki dynamics, instead, the presence of a conservation law makes th
analysis of the relaxation properties much more difficult than in the non-conservative
case, with interesting analogies with the problem of the Goldstone mode in quantun
mechanics [1], and many interesting questions are still open both in the one phase regic
as well as in the presence of phase coexistence (see [7]).

One important class of results for Kawasaki dynamics concerns the relaxation
behaviour under a suitable “high temperature condition”. Such a condition (see
Section 2.4 below for a precise description) requires in particular the exponential deca:
of the grand canonical covarianaasiformlyin the chemical potential, i.e. in the particle
density, and therefore it cannot be true at low temperature where, in general, phas
coexistence takes place for certain values of the density.

Under the validity of such a condition, the most important result is the so called
diffusive scalingL? for the relaxation time (in what follows identified with the inverse
of the spectral gap of the generator) of the Kawasaki dynamics in a box of sitest
proved in [14] and then, much later and by different methods, in [10] (see also [11] for an
extension to a spin system with random interactions). Such a result is a key stone in th
study of the hydrodynamical limit of the Ising model [18] and it plays an essential role
in the proof of the power law.?-decay to equilibrium of local observables (see [10]).
Quite interesting its proof poses new, non-trivial problems in the theory of canonical
Gibbs measures, their large deviations properties and their detailed equivalence to grat
canonical ones (see [5,6,9,4]). Some time after the basic paper [14], the above result wi
considerably strengthen in [19] in that the same diffusive scaling was proved also for the
logarithmic Sobolev constant (see also [15,20] for related work).
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The basic strategy of [19] is the martingale approach developed in [14] together
with entropy bounds, large deviations estimate for canonical Gibbs measure and partic
averaging on mesoscopic scales. Unfortunately the paper is particularily intricate to reac
partly because the problem of equivalence of ensembles is entangled with the analysis
the dynamics, and, as a consequence, the main physical mechanism behind the diffusi
scaling does not appear clearly.

With this motivation in mind and with the desire to understand the result by our own
methods, we decided to reprove it following the “bisection” technique envisaged in [10].
Our method works as follows. Le{L) be the largest (over the boundary conditions

and number of particles) among the logarithmic Sobolev constants in a cube df side
with given boundary conditions and fixed number of particles. The real hard part is to
prove an upper bound far(L) of the right order; the lower bound is readily obtained
by plugging into the logarithmic Sobolev inequality a suitable test function (a slowly
varying function of the local density). In order to prove the correct upper bound we look
for a recursive inequality of the form

c(2L) < gc(L) + kL2 (1.1)

which, upon iteration, proves the bound.) < k'L?.

For this purpose, let\ be the cube of side2and let us divide it into two (almost)
halvesA 4, A, in such a way that the overlap betwe&nand A is a thin layer of width
3L, § <« 1. Let us denote by the canonical Gibbs measure anwith some given
number of particles and let Efitf?) = v(f2log(f2/v(f?))) be the entropy off? w.r.t.

v. If the two o -algebras?; := Fy; andF; := Fag, namely ther -algebras generated by
the lattice gas variables outsidg and A,, respectively, wergveakly dependerin the
sense that for somg(L) « 1

[v(glF2) —v(g), <e(Lv(g) (1.2)

for all non-negative functiong measurable w.r.tF; (weak dependence on the boundary
conditions), then it would follow (see [8] and Section 3.3 below for more details) that
(almost factorization of the entropy

Ent, (£2) < (14 (L)) v(Ent, (£ F) + Ent, (f2172)).

where Enf(f?|F1) is a shorthand notation for the entropy 6f w.r.t. v(-|F1). Notice
thatv(-|F1) is nothing but the canonical measure on the smallenset

If the canonical measure were replaced by the grand canonical one then, under ot
mixing condition, (1.2) would follow immediately witla (L) = O(e™"™%) for some
positive m and few lines more would suffice to prove uniformly boundedness of the
logarithmic Sobolev constant for a “high temperature” Glauber dynamics [8] (see
also [16] for a similar discussion for the spectral gap).

For the canonical measure instead, (1.2) cannot hold precisely because of th
conservation of the number of particles. Even in the absence of any interaction, the
Kawasaki dynamics on two nearby disjoint sets does not factorize into two independen
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dynamics because the particles may migrate from one set to the other one. In particula
the relaxation time im\ (intuitively proportional tac(L)) is related to the relaxation time

of the modified Kawasaki dynamics in which the number of particles in the three sets
A1, Ap andA; N A is conserveandto the relaxation time of the process of exchange
of particles between 1, A, and A1 N A,. This suggests to try to separate the two effects
which are, a priori, strongly interlaced and to analyze them separately. In some sens
this idea is the heart of our approach and technically it can be achieved by elementar
conditioning as follows. Letg andn; be the random variables counting the number of
particles inA; N A, and in A\ A, respectively and let Eptf2|no, n1) be the entropy

of £ w.r.t. canonical measuneconditioned o, n1. Then we can write

Ent, (£2) = v(ENt, (f|no, n1)) + Ent, (v(f?|no, n1)). (1.3)

The second term in (1.3) can in turn be expanded as

Ent, (v(f?|no, n1)) = v(Ent, (v(f?|no, n1)lno)) + Ent, (v(f3no)).  (1.4)

Notice that in the first term in the r.h.s. of (1.3) we need to bound the entropy with respec
amulti canonicalmeasure in which the number of particles in each atom of the partition
{A\ A1, AN Ap, A\ Ao} is frozen. As shown in [9] (see also Section 3.2 below)
such a new measure has better chances to satisfy the “weak dependence” condition (1
than the original measune precisely because of the extra conservation laws. Thus, by
the previous reasoning, we may hope to bound the first term in the r.h.s. of (1.3) by
the largest among the logarithmic Sobolev constant of each of the three sets times tt
Dirichlet form of the Kawasaki dynamics. Notice that for each of the three sets the linear
dimension in one direction has been (at least) almost halved. Thus the first term in th
r.h.s. of (1.3) should be the responsible for the first term in the r.h.s. of (1.1).

Let us now examine the pieces that come from the second term in the r.h.s. of (1.3). A
one can observe in (1.4), in each of them one has to bound an entropy with respect to t
distribution of a one dimensional discrete random variable e.g. the number of particle:
ng in the second one. Although such a distribution is difficult to compute exactly, one
has a sufficiently good control to be able to establish, via Hardy inequality (see [17]
and [2]), a sharp logarithmic Sobolev inequality with respect to the Dirichlet form of a
reversible Metropolis birth and death process. Physically such a process corresponds
the creation of an extra particle in ef§ys N A, and the contemporary annihilation of a
particle in e.g.A \ A; that is to theexchangeof particles among the three sets. Since
each particle moves, essentially, by a sort of perturbed random walk, and on average
has to travel a distance(D), it is not surprising that the second term in the r.h.s. of (1.3)
is the responsible for the? term in the r.h.s. of (1.2).

Of course and unfortunately, the story is quite involved and we have deliberately
hidden here several technical extra conditions that would have obscured the whol
discussion without adding any relevant information.

We conclude with some technical comments and a short road map of the paper.

In Sections 5 and 6, that represent the real technical core of the paper, we nee
to bound from above canonical (and multi canonical) Laplace transform of the form
va(expr > ca &x)), Whereg, is the translated by of a local function around the origin.
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In principle that could be a difficult task because, due to the conservation law, canonica
measures do not have good mixing properties. Instead of entering into the analysis of th
large deviations properties of,, we use the simple, but quite useful bound (see [10]),

v (€ 2ren®) < Ay (€ 2nen®),

whereA is some universal constant apg the grand canonical Gibbs measure. Such a
bound, valid under our mixing condition, simplifies enormously the problem (compare
for instance with [19]) because grand canonical Laplace transforms can be easil
bounded using concentration inequalities and logarithmic Sobolev inequalities w.r.t.
Glauber dynamics.

Road map. We have decided not to give a completely sequential proof but rather tc
postpone the proof of some key technical estimates in the second part of the paper. |
this way the non-expert reader can read the proof of the main result already in Section
provided he accepts some basic bounds that are discussed in Section 3 and proved
Sections 5, 6 and in the appendix. More precisely:

e In Section 2 we define the setting, the mixing condition we need and we state the

main result.

e In Section 3 we collect several technical results, part of which are based on the ke
bounds obtained in Sections 5, 6 and in the appendix, that are necessary to pro\
the main theorem. A detailed description of these results is given at the beginning
of the section.

e In Section 4, by using the results of Section 3, we prove recursively the main
theorem on the diffusive scaling of the logarithmic Sobolev constant.

e In Section 5 we study in some detail grand canonical and canonical Laplace
transforms via the so called Herbst's approach. This section is the key technica
input for the next one.

e In Section 6 we bound the square of covariances of the fogy?2, > ., &),
mainly via the entropy inequality and the bounds obtained in Section 5.

o In the appendix we discuss the logarithmic Sobolev inequality for one dimensional
random walks via Hardy’s inequalities with some application to our problem.

2. Notation and results

In this section we first define the setting in which we will work (spin model, Gibbs
measure, dynamics), then we define the basic mixing condition on the Gibbs measur
and subsequently state the main theorem on this work.

2.1. Thelattice and the configuration space

The lattice. We consider the! dimensional latticeZ¢ with sitesx = (x4, ..., x4)
and norms

d 1/p
x|, = (Z |xi|f'> p>1 and |x|=|xle= max |xl.
i=1
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The associated distance functions are denoted, by -) andd(-, -). By O, we denote
the cube of allk = (x4, ..., x,) € Z¢ such thaty; € {0,..., L —1}. If x € Z%, Q. (x)
stands forQ; + x. We also letB; be the ball (w.r.td(-, -)) of radiusL centered at the
origin, i.e.B; = Qo1 41((—=L, ..., —L)).If A is afinite subset oZ¢ we write A CC Z¢.
The cardinality ofA is denoted byA|. F is the set of all nonempty finite subsetsZsf.
[x, y] is theclosed segmentith endpointsc andy. Theedgesof Z¢ are those = [x, y]
with x, y nearest neighbors . We denote by, the set of all edges such that both
endpoints are im\.

Given A c Z¢ we define its interior and exterior boundaries as respectidely, =
{xeA:d(x,A) <1} anddtA = {x € A°: d(x, A) <1}, and more generally we define
the boundaries of width asd, A = {x € A: d(x, A°) <n},d A ={x € A d(x,A) <
n}.

Regular sets. A finite subsetA of Z¢ is said to bel-regular, [ € Z,, if A is the
union of a finite number of cubag, (x?) wherex! € IZ?. We denote the class of all such
sets bylF,. Notice that any set is 1-regular, il&_; =F.

The configuration space. Our configuration spacés Q2 = SZ' whereS = {0, 1},
or Qy = SY for someV c Z?. The single spin spac§ is endowed with the discrete
topology and2 with the corresponding product topology. Givene  and A C Z4
we denote byo, the natural projection oveR,. If U,V are disjoint,oyty is the
configuration on/ U V which is equal tax onU andz on V. GivenV € IF we define
thenumber of particlesVy : 2 — N as

Ny(o)=> o(x) (2.1)

xeV

while thedensityis given bypy, = Ny /| V.

If fis afunction o, A denotes the smallest subsetZsfsuch thatf (o) depends
only ono,,. f is calledlocal if Ay is finite. Thel-supportof a functionASf),l €ly,
is the smallest-regular set/ such thatA  C V. F, stands for ther-algebra generated
by the set of projection$r,}, x € A, from  to {0, 1}, wherer, .0 — o(x). When
A =Z% we setF = F, andF coincides with the Boreb-algebra onQ with respect
to the topology introduced above. Byf ||, we mean the supremum norm ¢f The
gradientof a function f is defined as

(Vi f)(o) = f(o%) = f(o),

whereo® € Q is the configuration obtained from, by flipping the spin at the site.
Finally Osd f) =sup, , | f(o) — f(n)I.

2.2. Theinteraction and the Gibbs measures

DEFINITION 2.1.— A finite range, translation-invariant potentig]®,},cr iS a
collection of real, local functions of® with the following properties
(1) ®p(0) = Dpyr(0c0) forall o, all A € F and all x € Z¢, whereé, denotes the
shift operator byx € Z¢.



N. CANCRINI ET AL./ Ann. I. H. Poincaré — PR 38 (2002) 385-436 391

(2) For eachA the support ofb, coincides withA.
(3) There exists > 0 such thatd, = 0 if diamA > r. r is called the range of the
interaction.

(4) 11 == as0 1Pl < 00.
Given a collection of real numbeks= {A,},.z« and apotential ®, we defined as

A _f(h+r)ox) if A={x},
Do) = { d,(0) otherwise,

wherenh is the chemical potential (one body part®j.
Given apotential ® (®%) andV € F, we define the Hamiltonia#? : Q2 — R by

Hi(@)=— Y ®,(0).
A: ANV £Y
Foro, t € Q we also IetHf,I’”(a) = H{ (oytyc) andz is called theboundary condition
For eachV e T, t € Q the (finite volume) conditional Gibbs measure @n, F), are
given by

A (o) = { (Z9 ) texp—Hy " (0)] if o(x) =t(x)forallx e V¢, (2.2)
0 otherwise,

where Z{‘,’” is the proper normalization factor called partition function. Notice that
in (2.2) we have absorbed in the interactidnthe usual inverse temperature facpr
in front of the Hamiltonian. In most notation we will drop the supersc#gf that does
not generate confusion. Moreover, whenever we considanstead of®, we will write
H&’A for the finite volume Hamiltonian anyi(,’A for the corresponding finite volume
Gibbs measure.

Given a measurable bounded functighon 2, wy (f) denotes thdunction o +—
uy, (f) where u§ (f) is just the average of w.r.t. u§. Analogously, for any event
X, ny(X) :=uj,(1x), wherely is the characteristic function of. uj (f, g) stands
for the covariance otruncated correlationwith respect tqu},) of f andg. The set of
measures (2.2) satisfies the DLR compatibility conditions

wh(mv (X)) =pi(X) VX eFVVCAcCCZ (2.3)

DEFINITION 2.2. — A probability measurg:. on (2, F) is called a Gibbs measure
for @ if
(X)) =mw(X) VXeFVVeF (2.4)
see e.g[13].

We introduce the&anonical Gibbs measurem (2, F) defined as

Vi y=uLCINA=N) Ne{0,1,...[Al. (2.5)
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2.3. Thedynamics

We consider the so-called Kawasaki dynamics in which particles (spinsowith=
+1) can jump to nearest neighbor empiy(£) = 0) locations, keeping the total number
of particles constant. Fos € 2, let o** be the configuration obtained from by
exchanging the spins(x) ando (y). Lett,,o0 =o*¥ and defingTy, f) (o) = f(t,,0).
The stochastic dynamics we want to study is determined by the Markov generator:
Ly, V ccZ¢, defined by

Ly @)= > @) (Vi f)o) 0€Q, f1Q—R, (2.6)

[x,yle€y

whereV,, = T,, — 1. The nonnegative real quantities, (o) are thetransition ratesfor
the process.

The general assumptions on the transition rates are

(1) Finite range c,, (o) depends only on the spingz) with d({x, y},z) <.

(2) Detailed balanceFor allo € 2 and[x, y] € Ezq

exp[— Hix.y)(0)]cxy(0) = expl—Hix 1 (0) ] exy (). (2.7)

(3) Positivity and boundednes$here exist positive real numbetg (8) andcy (8)
such that

Cm K Cyy(0) <y Vx,yEZd, o €. (2.8)

We denote by},  the operatoly acting onL?(%, vy y) (this amounts to choosing
as the boundary condition and as the number of particles). Assumptions (1), (2) and
(3) guarantee that there exists a unique Markov process whose generafoy, isind
whose semigroup we denote &§"-V7),>o. L},  is a bounded operator dif (2, v§, )
andvy, y is its unique invariant measure. Moreovgr, is reversiblewith respect to the
process, i.eL}, , is self-adjoint onL2(Q, v} ).

A first fundamental quantity associated with the dynamics of a reversible system is
the spectral gap of the generator, i.e.

gap(L}, y) =infsped—L}, y [17),

where1* is the subspace df?(2, v}, ) orthogonal to the constant functions. Wedet
to be the Dirichlet form associated with the generdtjr,;,

1
Evn(f, )= (f —L@,Nf>L2(Q,v;_N) =5 Z vy N [ny(vxyf)z] (2.9)

[x,yle€y

and Vag, , the variance relative to the probability measufe, . Then the gap can also
be characterized as
Evn(fo )

ferz@oy . Vary y(f)
Vary,  (f)#0

gap(Ly y) = (2.10)
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A second relevant quantity is the logarithmic Sobolev constgnt defined as the
smallest constant such that

EN,  (£2) < 5E00(F. ) (2.1)

for all non-negative functiong with vi, , (f?) =1, where Erft , (f%) = vy y(f2In f?).
For the connection between spectral gap, logarithmic Sobolev constant and speed of r
laxation to equilibrium we refer the reader to [12].

2.4. Definition of the mixing condition and main results

In order to formulate our basic mixing condition on the two (or more) body part of the
interaction® we fix positive numberg’, m, [ with I € N. We then say that a collection
of real numbers. := {1}, 5« isI-regular if, for alli € Z4, and allx € Q;(x"), x € 1Z¢,
Ay = Ay

DEFINITION OF PROPERTYUSMT(C, m, [). —For anyl-regular setA, anyl-regular
A, any boundary conditiom and any pair of bounded local functionsand g

LR ) < Csupp(fDsupul s wsh Do D0 e

0
M o7 AY yea Ay
X €0, f YEO, Ag

provided thaTd(ASf), Ai,l)) > 1. Herer denotes the range of the interaction.

Remark— The expert reader may have noticed that our condition is different, and in
principle stronger, than the one used in [14] and [19] because we require the exponenti
decay of covariances uniformly in the chemical potential even when thevatiesover
the atoms of a partition ok while in the above mentioned papers the chemical potential
is assumed to be constant overin two dimension, one can prove by cluster expansion
methods (see [4]), that the two conditions are equivalent. In higher dimension one cal
construct examples (see Appendix A2 of [4]) in which a kind of phase transition occurs
along the interface between two subsets with different chemical potential, even if for
all I-regular setsA the covariances decay exponentially fast uniformly w.r.t. to constant
chemical potentials.

We are finally in a position to formulate the main result of this paper on the logarithmic
Sobolev constant of Kawasaki dynamics in a finite volume.

THEOREM 2.3. — Assume that there exist positive numb€rs:, I, with/ € N, such
that property USMTC, m, 1) holds. Then there exist positive constantsc, such that

c1L? < CoN S coL? (2.12)

for all boundary conditionr and particle numbenv.
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3. Technical results

Here we collect several preliminary technical results that will be used in the future.

Although the reader may skip this section during a first reading and come back whelr
these results are needed, we still think it is useful to give a short roadmap of the sectior

e In Sections 3.1, 3.2 we recall some useful results on the comparison between finit
volume multicanonical Gibbs measures, namely grand canonical Gibbs measure
conditioned to have a specified number of particles in the atoms of a given partition
of a finite setA, and the corresponding unconditioned measures.

e In Section 3.3, we prove a “baby” version of a nice, new inequality for the entropy
(see [8]), that, very roughly speaking, allows us to bound the multicanonical entropy
in terms of the multicanonical average of the sum of local entropies and of the
multicanonical variance. For the expert reader we just mention that the importance
of such an inequality resides in the fact that one is spared from the cumbersom
computation of quantities likgv,, v (32

e In Sections 3.4, 3.5, 3.6, we first show how to compute and then how to estimate
quantities Iikeu([%v(f2|NV =n)Y/2]2), wherev is a multi canonical measure over
the atomg A;}¥_; of a partition of a finite sef\, V is a subset of a given atomm;
andd% is the discrete derivative. As it will appear clearly in Section 6, terms like the
one above naturally appear in the recursive bound of the spectral gap and, roughl
speaking, they measure the influence on the logarithmic Sobolev constant of the
exchange of particles between different atoms of the partition.

e In Section 3.7 we recall some results proved in [10] on the distribution of the
number of particles in an atom of a given partition of a finite deunder a
multicanonical measure. These results will then be used to prove sharp bound o
the logarithmic Sobolev inequality for such a measure via Hardy inequality (see the
appendix).

The general setting

Throughout all this section our setting and notation will be as follows.

Fix 8o € (0,1) and two integerSjmax, [ such thatsg jmax < 1. Let Ly, ..., L;max be
large multiples of the basic length scdlelet L =3, L; and assume that; > 5oL
for any j. We then choose one coordinate direction, e.g.dttdrection, and we take
A = Q;, A1 equal to the first slice ofA orthogonal tod-direction of width L4, i.e.
A ={x e A: 0< x; < L1}, A, equal to the slice oA on top of A; of width L, and
so on. Let alsdN = {N;}/™ be a set of possible values B, := {Ny,}/™%, p; = ﬁ—h
the corresponding densities and let us assume, for a given boundary condlithuat
A = A(7,N) is constant on each sét; and such thapf;A(NA_,) =N;, j=1..., jmax
(see the appendix of [9] for a proof of the existencerpf Notice that, as far as the
tilting fields X is concerned, the variable$; could also beany set of real numbers in

the ranggO0, |A;[]. In particular we will be allowed to compute the derivativeio.r.t.
any of them. We simply writg: for uj\’& andv for the multi canonical Gibbs measure
M(|NA, = N]’.] = l’ RS} jmax)-
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Finally, in all this sectionk will denote a generic constant, depending on the
interaction, on the dimensions of the lattice, &mand onjmnax, Whose value may vary
from line to line.

3.1. Onthetilting fields

We begin by recalling the following quite general result on the relationship between
particle numbers, boundary condition and the chemical potential (see the appendi
in [9]). We assume herégnax = 1 so that we can set, for notation convenientie,=
n, p = 7. In order to be more clear, in the following lemma we will write explicitly
the dependence on the boundary conditions and the chemical potential of the gran
canonical Gibbs state.

LEMMA 3.1. — Assume property USMT, m, ) and letx € (0, 1). Then there exists
a constantk independent onl. such that for anyL large enough and any with

I fllo=1.
(1) If d(A s, A€) > L

. A
i) sup |V,u (D)l <ko 2Ll
yed A IA]
) d 1A
iy supl||V,—u"* )H <k—L.
( yearfi\ — an o 00 |A|2
) IfA;CA
. d _, 1A
% < jp—t1
Q) Hdn“ (f)HOO\ AL
; (o 1A
—u" <k==1
(") Han“ (f)Hoo\ N

Proof. ~-We omit the proof since is practical the same of an almost identical result
(Proposition 3.1) of [10]. O

3.2. Equivalence of ensembles

Here we recall some fine results on the finite volume equivalence of ensembles the
will be crucial in most of our future arguments. We refer the reader to Sections 5, 7.2

and 7.3 of [9].
GivenM > 0,¢ € (0,1) andA C A, we say thatA is good if there existg € [1, jmax]
such that either

(xeA:dx,A)<MInL}yC A; and p;>|A|™
or

[xeAidx,A)<M}CA; and p; <|A|™".
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A setis bad if it is not good. For good sefsC A, j =1,..., jmax, We define

Ao [xeAdx, A)<MINLY if p; > A7,
(xeA: d(x,A) < M} if p; <|A°,

which for bad sets

={xeA:dx,A)<MInL}.

With these notations the results on the finite volume equivalence of ensembles that wil
be essential for the rest of this paper read as follows.

PROPOSITION 3.2. — Assume condition USMT, m,[). Then, for anyl, M large
enough and: small enough independent gf;} ’flalx, there existd.g = Lo(C, m, ||®|, I,
M, 89, €) such that, for anyl. > Lg the foIIowmg holds. Fix twad-regular setsA1, A,
in A such that A;| < |A|*, i =1, 2, and two functionsf, g With || fllco = lIgllec = 1,
AD = A1, AD =4,

(1) Assumegimax=1. Then

md(ALAz)
(f,9)| <C(f.9)p IAI ,

whereC(f, g) = k|A1|?|Az|%. Moreover

[W(f) = 1) <k |A|

(2) Assumejmax=> 2. Then

v(|f) Av(lgl) if ApandA, are both good

v(f, )| < C(f, 8)A(A1, Ap) v(ILfD ic;rAbfids, bad,
v(lg)) if Az is bad,
where
% gmd(A1,A2) if Ay or A, is good,
Hon A { (182" (134)°  eminitn otherwise.

v hi< | Al [y + o) if Ay is good,
Sup v ( ) —v° ( ) \ . .
vear 10l (133)° 4 a0 [*’ﬁ#@f,iﬂ if Ay is bad,

where 2, is the set of configurations’ that coincide witht in the half space
(xeZ x; <L}
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Remark— Actually the first part of the proposition holds in a much more general
geometric context (see Section 7.3 of [9]).

For future purposes the next result is stated in a slightly more general form. The proo
is given in [10].

PrRoPOSITION 3.3. — Assume condition USMT,m,[) and let f be such that
IA;\ Ar| = 80|lAjlforany j =1,..., jmax. Then, for any large enough, there exists a
constantA depending only o, m, | ®||, [, jmax S0 Such that

v D < Ap(lfD-

In particular

Var,(f, f) < AVar,(f, f).

We conclude this paragraph with a final result that plays a crucial role in our approact
(see Section 3.3). For simplicity we consider only the two dimensional case and at the
end we explain how to generalize it to higher dimensions.

Assume that the number of layeligax is greater than 4, fix X jo < jmax and
let A=UL A;, B=UpAjandS = Aj1UAj,. Let alsovy(-) := v(:|Fx.) for
X = A, B, S. Notice thatv-almost surelyV,, Nz andNy are constant.

LEMMA 3.4.— Assume condition USMT, m, 1) and letg be a positive function
measurable w.r.tF,.. Then for anye > 0 there existsLo = Lo(e, C, m, || Do, L, 8)
such that, ifL > Ly,

lve(g) —v(g)lle < EV(Q).
In other words the Radon—Nykodim derivative of the marginal/an of vz w.r.t. the
same marginal of is close to one in thé&>-norm.

Proof. —Fix ¢ € (0,1) and n and let i (n) := e V*#W /)] (e"V+H), Using the
definition of, and the DLR equations (valid because the numbers of particlesi S
are constant) we have

Vi (9) — V()| = v (g, b))l
=|vi(g, vs(hy))|
<vi(g) sup|vs(hx) s

T'eQ,

(3.1)

where @, is the set of configurations’ which differs fromt only on 3*S N B. By
point (3) of Proposition 3.2 there exists a positive constasuich that

, InL)?
Sup|vE(hy) — v ()| < k%. (3.2)
T/eQy
Thus
. InL)}
W (g) < @+k“‘)}z@y (3.3)
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As any two boundary configuratiomsandn’ differ at most ink L sites, by iterating (3.3),
we have

I L % kL , ,
vp(8) < {1+C/(nL2) } vpg < (L4 8)vp(g) (3.4)

for L large enough. It suffices now to integrate (3.4) w.niud) and use the arbitrariness
ofn. O

Remark— The restriction ofl = 2 comes from point (3) of Proposition 3.2. In fact,
in e.g. three dimensions, the bound (3.2) becomes useless. The way out is to have tl
“safety belt” S divided into more layers (just three éh= 3). It is interesting at this point
to observe that a similar problem occurs also in the recursive study of the spectral ga
(see [10]). In that case however, the safety Sett 4 = 2 consisted of just one atom and
not of two as in our case. The reason is that, in the spectral gap analysis, a weaker for
of Lemma 3.4 was necessary in which the r.h.s. of the basic inequalitly |5, and not

ev(g).
3.3. A two-block inequality on the entropy

Here we give a result that is a key step in our recursive bound of the spectral gap o
Kawasaki dynamics. For simplicity we discuss the next estimates in two dimensions ant
at the end we explain how to generalize it to higher dimensions.

Assume that the number of layefsax is greater than 4, fix X jo < jmax and let
A= UjozlAj’ B = Ujomi?_A] and S = AjO_l U A]O Let also Vx(') = V('lj:'XC) for
X = A, B, S. Notice thatv-almost surelyN,, Nz and Ng are constant.

PROPOSITION 3.5. — Assume USM{C, m, ). Then, for anye > O there existslg
depending only om, C, m, || ®| ., I, § such that, ifL > L,

Ent,(f?) <v(Ent, (f?) +Ent,, (f?)) +&Var,(f) (3.5)

for any f with v(f) =0.

Remark— The origin of this inequality is the following simple bound valid for an
arbitrary product measute= v; ® v,:

Ent, (%) <v(Ent, (/%) +Ent,(f?) V>0

and, in some sense, the teeriar, (f) in (3.5) takes into account the correction due to
the presence of the overlapping st§pAs we will see the proof of the proposition is
rather simple. Quite a non-trivial task is to remove the restrictiofi) = 0. If one tries

to use the Rothaus inequality (see e.g. [2])

Ent, (/2) < 2Var,(f) + Ent, ([f - v(H)]’)

together with (3.5), one gets immediately

Ent, () <v(Ent, (f?) +Ent, (£?)) + 2+ &) Var,(f) (3.6)
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which is much worse than (3.5) because of the facter £ Quite remarkably, in [8]

the restrictionv(f) = 0 has been removed in great generality and moreover the error
terme Var, (f) has been replaced ByEnt, ( f2). The resulting inequality has been then
applied to provide a very simple and natural proof of the logarithmic Sobolev inequality
for grand canonical Gibbs measures under a mixing condition. For a “variance”
counterpart of (3.5) (that is Entf?) — Var,(f)) we refer the reader to Proposition 3.4

in [10] (see also Section 3.7 in [16] and [3] for the Glauber case).

Proof. —The proof is based on Lemma 3.4 above. We write
f? va(f?)
E (1) = (110 -y ) v (#7100 )
vp(va(f 2)))
v(fd )
The first term in (3.7) is equal ta(Ent,, (£2)). By using the variational definition of the
entropy Eng, (2

+ v(leog (3.7

Ent, (%)= sup vg(f%)

g vp(e8)=1

) (sz)) 1
F\vp(a(f2))

the second term in (3.7) can be bounded from above (@nt,,(f?)). Finally, the
argument of the logarithm in the third term is smaller than

together with

) (VA(f2)) _ vg(wa(f?))
P\ v(r?) v(va(f2))

for any L large enough independent fbecause of Lemma 3.4. Thus the third term can
be bounded from above by (%) =¢eVar(f). O

<l+c¢

Remark— It is clear from the proof that the key input for the result is Lemma 3.4.
Therefore one can easily formulate the proposition in dimension greater than two simply
by assuming that the sétconsists of a sufficiently large number of layers (just three in
d = 3) as it was explained already in the remark after the proof of Lemma 3.4.

3.4. Computing the gradient with respect to the particle number

LetV andW be suchthaV N W =@, A; =V U W for somej € {1, ..., jmax and
0<ép < ‘%‘ < 8t Heresd, is the same as the one entering in the general multicanonical
setting described at the beginning of the section.

Our goal is to compute, for an arbitrar, the gradient w.r.t. ta: of (v(f?|Ny =
n))*?. For simplicity we sev(-|n) := v(:|Ny =n) andy (n) := v(Ny = n).

Forx, z € Z¢, we define the events

E. . ={c0eQ ox)=10() =0} (3.8)
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In Proposition 3.10 of [10] the following result was proved.

PROPOSITION 3.6. — Let V and W be suchthaV N W =@ andA; =V U W for
somej € {1, ..., jmad. Letalsoc, =n(|W|— N; +n), that is(number of particles irV)
x (number of holes i), and letc, =n(|V| — N; +n). Then, for all functionsf on
we have

1)
2 2 1 V(” 1 —V..Hp
v(fn) —v(fIn—1)=— > (Ve f?))1e In—1)
Cn y( ) xeVvV
zeW
lyn—-1) _v.H 5
—_—— v((e =" = 1)1g, , fIn—1),
a2 1. f2n 1)
zeW
(2)
v(f3n) —v(fin—1)=—- ! v () > v((Vae f)1g, € V2 n)
cN—n—i—l )/(n - 1) xeV -
zeW
1 y(n) V.. H 2
- v((e""™="r =11k, fn).
yn-D X; (( )1e,., f7In)
zeW
Let NOW nmax, nmin b€ the maximum and minimum value of the particle number in
V under the constraint tha¥,, = N;. Letu = |p;|V|], wherep; = ‘A D and let, for

n € (Mmin, Pmax)
o B Caey v((Var fA1g, eV n — 1) ifn<u
A(l’l) _ zeW

WS v (Ve fD1g, e Vtr i) otherwise,
CN7n+l y(n—=1) zeW -

(3.9)

Loy Yaey v((E e — D, fAn—1) ifa<u
B(n) = _
() — V(”) erv v((e V=t —1)1g , f2n) otherwise.

With this definition, and using
2 2
2 xX—y (x—y)
- - < )
Wx=v3) <ﬁ + ﬁ) XVy

we have immediately the following corollary

COROLLARY 3.7.—In the same setting of Propositic6

2
Sy Ay =D (oA — Jo(r2n =) <23 v (Am? + B?),

YAy (=1

wherey(n) := 72000 205 -
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35. Bound on ¥, yr(n)A(n)?

Here we show how to bound from above the téripy (n)A(n)? of Corollary 3.7.
PROPOSITION 3.8. —

ny<n)A<n)2 <k——&,(f, ).
|A |
]

Proof. —Let u = | p;|V|] and assume, without loss of generality, < % andn < u
Then we observe that, because of the conservation law,

1 -1
1yn=1 Z v(e Ve, n—1) =1,
&y )
zeW
so that
o2 1 < lym— <ol _—
C?vj—n+1 Ch )/(n) cN e

Now, using twice the Cauchy—Schwarz inequality together with the idesmtity »> =
(a —b)(a +b) onV,, f? gives
1yn—1 2

A(n)zz[— S (e AV, f 20— L En)v(Exln — 1)
Cn y(n) (x,2)eVXW

1

< k / Z v((szf)zln - 1» sz)V(sz|n - 1)

CNj—”+1 (x,2)EVXW

ly(n-1) 2 2
- = + (T —1,E. )v(Exn—1). (3.10
X W (X’ngwv(f (Teo f)?In JW(E,In—1). (3.10)

We recall thab (-|n — 1)-almost surelyy xey 1g, = Cy_,41- SO, ONe can see that

YD S (o - 1 Eu)v(Euln — D

Cn )/(I’l) (x,2)eVxW

1
> v(fP1g,n—1)

C;V.i_”'*‘l (x,2)EVXW
=kv(f3n—1). (3.11)
On the other hand, using the change of variable> o*¢ and the equality(fg) =
v(f, 8) +v(fHv(g), we get

lyn—-1) 2
YR sz - 1a sz sz -1
P (X’Z)EZVva« 1) JV(E|n — 1)

<1J/(n—1) >

Cn )/(I’l) (x,2)eVxW

<k

v((Te )%1E, In — 1)
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1
SO (e )

Cn (x,2)EVXW
<kv(f3n), (3.12)
where for the last inequality, we exploited the fact that|n)-almost surely
R
Now, sincec], is increasing im, we obtain from (3.10), (3.11) and (3.12) that

A(n)zgk/l (o) vo(fPn—-1} > v((Ve)Pn—1), (3.13)

CNj—‘H'l (x,2)eVxW

and similarily forn > u. Notice thatcy, _, ., > ¢, = ko;lA ;|2 Thus, it follows from
(3.13) that '

L2
An)? <k V. )?) <k E(f, 3.14
DAk, 3 VD SkCTEEG ) By
because
> v((Vae )P SKLUPE(S, f). (3.15)
(x,2)eVxW

In order to prove (3.15) we need the following definition.

DEFINITION 3.9. — Given a finite connected subsgtof Z4, a path choice inA is a
collection = {A,;: (x,z) € A x A} such that),, is a self-avoiding path fromx to z
inside A.

Given a path choice in A; andV, W as above, we let
Gy(\) = mgx#{(x, 2) €V x Wi Ay, Je},
eEcCA

Dy(x)= max [i,l.
(x,2)eVxW

Let nowA be any path choice. Thanks to Lemma 4.3 in [19] we get that

(Ve )%) <klhazl > v((Ve)?)

eCAxz

which, together with the definition @y (A) andDy (1), implies

Y (Ve )?) SkGy(MDy WES, 1)

(x,2)eVxW

A sensible path choice is the following. Givene V andz € W, start increasing (or
decreasing) the first coordinate .ofuntil it is equal to the first coordinate af Repeat
for the remaining coordinates until you get oWith this particular path choice it is
easy to see thaf, (\)Dy (1) < kL?*? (see Section 5.2 in [10]) and the proof of (3.15)
follows at once. O
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3.6. Bound on ¥°,, yy(n) B(n)?

Here we show how to bound from above the téripy(n) B(n)? of Corollary 3.7.

PrRoPOSITION 3.10. — Assume property USMT, m,[). Then for anye > 0 and
po < 3 there exist<C, such that, for anyf with v(f2) =1,
(i) if p; < po

1
> yrm)Bm)* < [C. +¢ENt,(f?)],
. PN
(i) if po<p; <3

1
> yrm)Bn)* < Fy |[C + C.L2E,(f. ) +€Ent,(f?)].

Proof. —
() Let u = [p;|V|] and assume, without loss of generality,< u. Then, by

proceeding as in the proof of Proposition 3.8,

2
> (eVefr —)1g n— 1) , (3.16)

N —u+l yevy
zeW

B(n)? < kv <f2

wherecy .1 =N —u+D(VI—u+1) > kp;|VIIW].
Let nowh, (o) := (€7 V+Hr() _1)(1—0o(x)) andg,(c) := (&7 V=2 _1)5 (x). Then

l 2
B(n)*> <kv (fz, —_— e Vi — Vg |n— 1)
Vi 2 1z

xeV
zeW

1 2

<kv (fz, S e Vi D —h,g.]in— 1)
i 2 | Jhres = hase]
zeW
2
+kv( heg.In— ) . (3.17)
p,|V||W| 2; ¢
zeW

Notice that
(e Vet —D1p —gh,=g.(1—0,) +hoo, ifdx,z)>r

Thus the first term in the r.h.s. of (3.17) can be bounded from above by

1 2
kv (fz, S (e Vet —D1p  —h,g]in— 1)
p;[VIIW] (X,Z)EZW[ = 1

d(x,z)<r

[Vl-n+1 2
+kv(f2 g.In — )
P IWIIV] Z )

zeW
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—-n+1
. 3.18
O WiV 2" ) .

In order to bound the second and third term in (3.18) we can apply Proposition 6.2 to the
functions) " .y g. and>_ ..y pjh.. The result is that the sum of second and third term
in the r.h.s. of (3.18) is smaller than

v(f%n —1)[Cev(f2In — 1) + e Enty oy (f2)]. (3.19)

k
PN
Notice that, if we average (3.19) ovef(n) we get, after a Jensen inequality, the sought
bound. Finally we consider the first term in the r.h.s. of (3.18). A sinigtebound gives
that this term is smaller than
1 1
L2 p?|A,|2

2

v(len -1)

and thus, by recalling the definition pf (), the result is obtained. To bound the second
term in (3.17) one has to use point (i) of Proposition 6.5.

(i) We can proceed as in the previous case using Proposition 6.3 instead o
Proposition 6.2 and point (i) of Proposition 6.5 instead of point (ij

3.7. On thedistribution of the number of particlesinside one block

The aim of this paragraph is first to recall some general result on the distribution of
the number of particles inside one blogk and secondly to derive an (optimal) upper
bound on its logarithmic Sobolev constant (see Proposition 3.17 below).

The setting is that of Section 3.4 above. We assume without loss of gener,a{t%
and we denote by = w(Ny).

We also setimin = max{0, N; — |[W|} andnmax=min{|V|, N;} to be the smallest and
the largest value oy (o) under the constraint thad¥, (o) = N;. It is easy to check
thatii < nmax— 7 < kit and similarly forii — npin.

In what follows we will consider the distribution of the number of particle¥ innder
the measure. More precisely we defing = {y (n)} to be the probability measure on
I = {n € [nmin, tmax]: 7 IS an integey, given by

y(n) :=v(Ny =n).

In order to obtain sharp bounds ¢rin), we modify the chemical potential appearing
in u:= Mf\’k inann- dependent way in such a way that the vatubecomes the new
average value oiVy underMA More precisely, givem € [nmin, nmax], €t A(n) =

Ao Ao, Ay, Aw, Ay, ..., Ajng) D€ @ new chemical potential constant on the
atoms of the new patrtition and such that
W (Na) =Ny i =10 jmaxs
w2 (Ny) =n, (3.20)
rk(n)

(Nw)=N, —n.
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It is then easy to check that can be written in the Gibbsian formy,(n) = e #™g(n),
where

- An)
H(n):= Z(K,(n)—)»,)N,-F)xvl’l-F)xw(N] —n)—A IOg( )
7 A (3.21)
rk(n)

(NA—N Nv—n)
MA (NA—N)

Finally, givene € (0, 1), we consider for technical reasons tlerégularization” ¢ here
must be thougth to be close to one)otiefined by

@(n) =K

e i jfnel,

y () otherwise, (3.22)

yé‘(n) = {

where

_ e, €1
Znelg y(n) ,
nfnax =n+e(nmax—n),
n‘l?nin = n+&(nmin —n),
I := [n‘l?nin’ nfnax] ni.
We now recall, without any proof, some results gnestablished in Section 3.4 and 4
of [10] under the mixing hypothesisSMT(C, m,[) that will turn out to be useful.
Then, we complete these properties by some others in order to prove, thatisfies
aconvex conditionOnce convexity is established, we can appeal to Proposition A.5 in
the appendix to give a sharp bound on its logarithmic Sobolev constant.
The first result concerns the behaviour of the “potenttli). As usuak will denote

an arbitrary constant depending only@rm, [, 8, ¢, ||®| . and whose value varies from
time to time.

LEMMA 3.11.—Foralln e I,

L o

k” <SHm+1D —Hm <k—" foralln>n,
n

1n — n—n _

7 <Hm-1—Hn) <k—— foraln<n.
n

The next two results show that the relative density betweemd its regularization
is bounded uniformly in the size dfand that the tails of (n) are at least exponential.
More precisely

LEMmMA 3.12. —

1
1@ oy
k ~nel Vs(”) nel Va(n)
LEMMA 3.13. — There exists a positive constasy = ¢(38, || P|l») Such thatve e
(€0, 1)
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y(n+ l) . .
W < E if ne [l’lmax, nmax],
y(n— l) 1 . .
W \ E if ne [nmin, nmin} .
COROLLARY 3.14. —
& 1 n—n _
% <ke ™ Vnzq (3.23)
Yelnl

and similarity for 2= n < 71,

The next result shows that the normalization fadappearing in the definition of;
is close ta7'/2.

LEmmA 3.15. —
1
z\/ﬁ < Z <k

Proof. —We must consider two term§;, ., e ™ and}_,., v(n).
By using Lemma 3.11 one can easily get fora# I,

1 -
% e_é(n_n)z < g Hm <ke kn(n n) (324)

Thus, using a comparison with integrals and a change of variable, it easily follows that
—f< S e ™ <k (3.25)
nelg

On the other hand, it follows from Lemma 3.12 that

€

mln Mmin y (7’1)
nzn;"n y(n)= mln) n_znr;m y (e

min min

manHL

n=nmin j=n+1 )/(])

Mmin 7\ "min~"
<V(nfnin) Z (5)

n=nNmin

2)/ ( mln)
A similar statement fOEZZZEW y (n) yields

D> v () =1—2(y (npin) + ¥ (Ma)) -

nelg
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We are left with the problem of bounding from aboyeén;,,) andy (n;,,). Because of
Lemma 3.13 it’s enough to contrel (n5,;,) andy. (n%,.,). By using Lemma 3.11 together
with Corollary 3.14, we get

ovG—1
)/( mln) Ye(n1) —_—
nl;i[nﬂ ve(J)

<ke %(ﬁ_”rgnin)z
< ke % (”min—ﬁ)2
< k e—k(ﬁ—”min)

In conclusion, we get thaf (nf,,) < & provided that is large enough. A similar
statement fow (ny,,,) gives finally that

1>) vy =

nelg

I\JIH

This result together with (3.25) completes the proofi

From Lemmas 3.11 and 3.15, one can easily seethatell shaped aroundat least
if we restrict it to the intervall.. Our last result shows that, in some sense, this property
holds also outsidé, .

LEmmMmA 3.16. —

1 e T Ly ) < ——e
n RS n n
k7 ve Vi

Proof. —Thanks to Lemmas 3.11, 3.15 and the fact that, — 72 is proportional toz
one can see that (3.26) holds foral€ 1.. Moreover, by using Corollary 3.14 the upper
bound of (3.26) holds for alt € I. It is therefore enough to prove the lower bound of
(3.26)forn e I\ I.

For this purpose, we let € [n},,, "max] (the case: € [nmin, n&,,] being similary) and
we recall that, thanks to Proposition 3.6 of [10],

i (A=m)? (3.26)

(VI =n)(N; —n) Syt
(n+DHAW| - N+n+1) y(n)

Therefore

n—1 . .
(IVI—=0)(N; —i)

k(n—nf a0 J

7 ()2 (e € H L nawi—n, +i+ 1

k1. 2
2—_e kﬁ(n n) }
7]

where we have used (3.26) to get the exponential boung faf,,,), Stierling formula
and a straightforward calculation to bound from below the product. The proof is
complete. O
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We are finally in a position to state the main result of this paragraph.

PROPOSITION 3.17. — Assume property USMT, m, ). Then, for all f: Q, — R
that depend only oVy (o), the following logarithmic Sobolev inequality holds

Ent, (/) <kii > (y(m) Ay(n—D)[f@) — f(n — D]

nel

Proof. —Because of Lemma 3.12 it is sufficient to prove the logarithmic Sobolev
inequality for the regularized measurg

Pick e sufficiently close to one in such a way that Lemma 3.13 holds. Then, thanks
to Corollary 3.14 and Lemma 3.16, the regularized measursatisfies theconvex
hypothesis CONW, ) described in the appendix, for soméndependent ofi and 1.
Therefore we can apply Proposition A.5 in the appendix and get the result.

4. Recursive estimate of the logarithmic Sobolev constant

In this section we prove the main result of the paper, Theorem 2.3, via a recursive
analysis on the behaviour of the logarithmic Sobolev constant when the linear size o
the volume under consideration is doubled. For simplicity we carry out our analysis in
two dimensions but the extension to higher dimension is straightforward (see remark &
the end of Section 3.3). We confine ourselves with the proof of the upper bound since
the lower bound is easily proved by plugging a suitable test function (a slowly varying
function of the local density) inside the logarithmic Sobolev inequality (2.11).

DEFINITION. — R, will denote the class of rectangles #*, which, modulo transla-
tions and permutations of the coordinates, can be writterRés, I;) = [0,7; — 1] x
[0, 1, — 1] with 0.1, <11 < I, < L. We also set

¢ (L) = max maxc}, v,
y ReR, Nz BN

wherecy, v, the logarithmic Sobolev constant & with boundary conditiorr and ¥
particles, has been defined ([2.11)

With the above notation we will prove the following recursive bound.

THEOREM 4.1. — Assume USM{C, m,1). Then there exists a positive constant
k=k(d,r, |®|) such that

3 2
CS(ZL) < ECS(L) + kL

for all L large enough. In particulasup, -, L~2cy(L) < +00.

Proof. —Let us consider a rectanglg := R(l1,l) € Ry, \ Ry with [; < I, and
let us fix a small numbes, € (0,1072) and we setd = |§oL|. Given an integer
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i €1, Lr.laoj — 1], we partitionA into four disjoint sub-rectangle{sAj}j?:1 as follows

A={xeA; 0<x2<p/2+ (i —1)d},
Ar={xeA; (i —1d <xp,<id},
Az={xeA; id <xp, < (i +1)d},
Ag={x e A; (i +1)d <x2},

(4.1)

andWGSGH:AlLJAzUAg, B=AUA3UA4, S=ArUAs.

Fix now a boundary condition outsideA, a number of particle®’ € [0, ..., |A|] and
letv:= v} . We will then use three times the formula relating the entropy ofv.r.t.
the measure, Ent,(f?), to the entropy off? w.r.t. the measure(-|Fo) conditioned to
a subo -algebraFy, Ent, (2| Fo):

Ent, (£2) = v(Ent, (f?|F0)) + Ent, (v[ 2 F0]) (4.2)
to write

Ent, (%) =v(Ent,(fIN4)) +Ent, (v[f?INa])
v(Ent,(f%|Na, Ns)) + v(Ent, (v[f2|Na, Ns]IN4)) +Ent, (v[ £?|Na])
= v(Ent, (f2|Na,, Nay» Na,)) 4+ v(Ent, (v[£2Na,, Nay Nas]INa, Ns))

+ v(Ent,(v[f?|N4, Ns]IN4)) + Ent,(v[ f?|N4]), (4.3)
where, we recallNy denotes the number of particles in the regiorFormula (4.3) will
represent our basic starting point. We will now examine separately each term in the r.h.s
Of,(ﬁi?)t);.sual, in what follows will denote a generic constant depending on the

interaction, on the dimensions of the lattice andsgrwhose value may vary from line
to line.

4.1. Analysisof thefirst term in ther.h.s. of (4.3)

For any smalk and large enough, we can use Proposition 3.5 to bound from above
the first term in the r.h.s. of (4.3) by
v(ENt, (f2INay, Nags Nas)) <v(ENt, (%) +Ent, (£2)) + 2+ ) Var,(f)
<v(Ent, (f%) +Ent, (%) +kL2E,(f. ). (4.4)

where the average is over the number of particles(B) and over the boundary condi-
tions outsideA, (B). Above we have used the trivial boun@var, (f|Na, Na,, Np,)) <
Var, (f) together with (3.6) and the spectral gap estimate (see [14] and [10])

Var, (f) <kL%E,(f, f).

Let us now examine the geometry of the bottom rectadglthe reasoning being similar
for the top one. There are two cases to analyze:
(@ L < %’L. In this case one easily verifies thate R%L.
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(b) 11 > %L. In this caseA € R,; but now thelongestside isl; and theshortestone
is smaller thari,/2+ (i + 1)d which in turn is smaller than.2L by construction.
Therefore maxy cj y < max{cs(gL), ¢,(2L)} where

G(2L) = max maxcy y.
ReRy. 1T,N
11<1.2L,

L>3L

In other words

v(Ent, (7)) < maxl G’L) G@LE )

and similarily forB.
In conclusion, we obtain that the r.h.s. of (4.4) is smaller than

max{e (G).aenf[avn sy ¥ ven@an?] 6 gn @9

[x,y]e€s

uniformly ini € [1, Lloa —1]]. Notice that the “spurious” ter@z[xyylegsv[cxy(vxyf)z]
comes from the fact that N B = S.

4.2. Analysisof theremaining termsin ther.h.s. of (4.3)

Here we bound from above the other three terms in (4.3). The necessary steps a
almost identical for all of them and therefore, for shortness, we treat only the second on
(the last one enjoys some minor simplifications not shared by the other two). Later or
we will state without further comments the analogous result for the first and third one.

For a given valuev, of the number of particles id, let p, := fjﬂ and assume, with-
out loss of generality, that, < % Let v(-) := v(-|N,) be the associated multicanoni-
cal measure and lgt be the corresponding (multi)-grand canonical measure. Let also
N¥ = [i(Ns), and lety (n) := D(Ns = n). Notice thatN} < kp, L? (see Proposition 3.1
of [9]). Then, using Corollary 3.7, we can write

Ent, (v /2|Na, Ns|INa) = Ent (D[ £?|Ns]) = Ent, (5 [f?|Ns])
<koaL? Yy ) Ay (= (\5(FANs =n) = \/o(s2Ns=n—1) )

<kpaL'> y;(n)(An)? + B(n)?), (4.6)

whereA(n) and B(n) have been defined in (3.9).
Thanks to Proposition 3.8 and 3.10, for amy> O there exists a constant,
independent 0p, such that the r.h.s. of (4.6) is smaller than

CeD(f?) + CL?E(f, f) + e Ent(f2?). (4.7)

Thus, if we average w.r.t. the canonical measutbe I.h.s. of (4.6) and use the simple
inequality v(Ent, ( £2|Fo)) < Ent,(f?) for any F,, we get
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v(Ent, (v[f?|Na, Ns|INa)) =v(Ent (v[f?INa, Ns]))
SCov(f2) + CL?E,(f. /) +eEny(f?).  (4.8)
Similar bounds hold also for the first and third term in the r.h.s. of (4.3).

4.3. Therecursion completed

We are finally in a position to complete the proof of Theorem 4.1. If we put together
(4.8) and (4.5) we get that, for amysmall enough

r.h.s. of (4.3 max{cs(gL>,és(2L)}[é’v(f, f)+% > v[cxy(nyf)z]}

[x,y1€&s
+ Cev(f?) + CL?E,(f. f) + € Ent (7). (4.9)
that is
Ent,(£?) < ( - ) maX{cg (§L> _l, 69(2L)_1}
1—¢ "\ 2 )

<erney X vlen ]

[x,yle€s

+ Cov(f?) + C.L2E,(f, f) (4.10)

for a suitable constant,.

Finally, following [16], we average the above inequallty w.rt. to the integer
(see (4.1)) and use the observation thatj aaries in[1, - 106 ], the stripsS = S; are
disjoint. In particular

Z S e (Vo NP <EL )

te[l 106 1[x,y1€€s;
so that
1 3\ .
Ent (/%) < (1 ) @+ 0o maxfe (52 ). @0 bes. )

+ Cov(f?) + CL%E,(f, f). (4.11)

Notice that if we write f = [f — v(f)] + v(f) and we use the Poincaré bound
Var, (f) <kL2E,(f, f) we get

Ent, (%) <Ent, (Lf — v(/)I?) +2Var,(f)
1 3 .
< (175 ) a+ uoepmaa (5L). a0 e )

+kC.L%E,(f, 1), (4.12)

where in the first line we have used once more the Rothaus inequality (see [2]).
In other words

iy < (1 12 )(1+ LlO(SoJ)max{cs(g ),éS(ZL)}+kC8L2. (4.13)
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Notice that if the original rectangla was such thal < 1.2L while [, > %’L, i.e. A was
chosen in the sub-class &, entering in the definition of,(2L), then we would have
obtained the inequality (4.13) with the factor mi@x3L), é,(2L)} replaced by, (3L)
simply because cagg right after (4.4) would have been impossible. Thus

&(2L) < (i)(u [ 1080 )¢y <§L) +kC,L2. (4.14)
1-2¢ 2

If we combine (4.13) with (4.14) we finally get

1 \° 3
Chn < (ﬁ) (1+ [1080))%c, (§L> +CL? (4.15)

for another constant;. Thus

1 2 2 3 2
and two more iterations prove the recursive inequality of the theorem provided that the
two parameters, §, were chosen small enough.
Finally the fact that max(c, (L)L) > 0 is a trivial consequence of the recursive
bound. O

5. Onthegrand canonical L aplace transform

In this section we seek Gaussian bounds on quantities of the/foet) where . is
the grand canonical Gibbs measure on some finite setfaisda mean zero function,
namely bounds of the type

u(e) <&,

Once bounds like the one above are proved, then we can transfer thenctmtrecal
Laplace transform by means of Proposition 3.3.

We first explain in some general terms our approach based on a combination of thi
so-called Herbst's approach and the DLR equation and then we consider some concre
cases that will play a key role in the recursive analysis of the logarithmic Sobolev
constant for the canonical measure.

Our setting is as follows. LeA € F; be a finite set and, for a given boundary
configurationt and (possible vector) chemical potentigllet i := MXA. Let {V,}uer
be a collection of subsets @f such that distV,, V) > r + 1 for o # g, r being the
range of the interaction, and I1&t=J, V,. Letalsof :Q, — R be such that.(f) =0

and define Osa f) := || f — uv, (Nl @nd Vag (f) = lluy, (f, f)llco-
PROPOSITION 5.1. — Fix g > 0. Then, for allz € [O, 9]
(i)
u(e) <e’kr,
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where K, = e?I1®1S° ||V, fl2,c, and ¢, is the logarithmic Sobolev constant pf
w.r.t. to the Heat Bath rates.

(i) Let fy(z) :=uj, (f). Then
n(e’) <™,

where

Ki(10) =1 3" IV fyllZc, + Y Var () go0%),

x€A\V o

Remark— Notice that if we make the trivial choic&, = A, then (ii) becomes

w(Eeh < &K} with Ky =u(f, f) €00sdf) Sych a choice makes sense when(@3as
independent ofA|. However, in most of the subsequent application, (@%e= O(|A|)
and a more refined choice of the s&tswill be necessary.

Proof. —In order to prove part (i) we appeal to the following lemma known as the
Herbst's argument (see for instance Section 6 in [2]).

LEMMA 5.2.— Let (22, F, u) be a finite probability space and a function ong.
Assume that there exisks > 0 such that for allr € [0, #o],

Ent, (df) < Ktzu(e’f).
Then, for allz € [0, o],

M(e{f) < ely.(f)"l‘Klz.

Proof. —Let H (1) = n(€/) be the Laplace transform of. A simple computation
gives

tH'(t)— H()InH (1) = Ent(€') < Kr*H ().
Dividing by 2H (1) and writing X () = ™29 'we get
K'(t) <K(@).
Notice now thatK (r) — u(f) ast — 0. Consequently, a simple integration achieves
the proof. O

Back to the proof of the proposition, if we apply the definition of the logarithmic
Sobolev constant, we get

Ent, (/) <, Y plex(Veer")?) < (ez"l"cu >, ||vxf||§o)r2u(e‘f ). (61

xeA xeA

wherec, (o) = u{,,(c*) are the flip rates for the Heat Bath dynamics. Thus, thanks to
Lemma 5.2, part (i) follows at once.

In order to prove part (ii) we proceed as follows. Denotedjythe Gibbs measure on
V with particle configuratiorr in A \ V. By constructionu], is a product measure over
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the setqV, }.; that, for simplicity and omitting the superscript we write as[ [, i -
Then we have

) -a(([1))

Let us examine a generic term, (¢/). A simple Taylor expansion up to the second
order gives

1o (€7) < exp(tia (f) + 17 Var, (f) €005+, (5.2)

In order to iterate (over the index) the above bound, we simply observe that
Varg (o (f)) < Varg(f) and Osg(uq(f)) < Osg(f). Thus

(T ) (¢7)) < Sevneessyy @ian) 539

It suffices now to apply part (i) to the new tepa(e*v"). O

Remark— It is important to understand the difference between the two results given
in Proposition 5.1. Assume that condititiMST(C, m, [) holds so that the logarithmic
Sobolev constant, is bounded from above uniformly in (see e.g. [16] and references
therein) and letff =" ., fi, wheref, is a mean zero local function with small support
aroundx. For small values of the parameteone expects, on the basis of a second order
Taylor expansion, a bound of the form

u(e) < e’

with K, ~ u(f, f) = >, u(fy, fr) because of the mixing assumption. Part (i) of
the proposition proves the above Gaussian boundallor, but with a new constant
Ky~ c, >, IVe fill%- In “normal” situations that is quite satisfactory because
becomes of the same order of the heuristic guess. The problem arises when, anomalol
very large values (maybe depending on the siz& pbf the chemical potential are
considered. In that case the Gibbs meagubecomes very close to the product of highly
unfair Bernoulli measures and its logarithmic Sobolev constargets very large (see
e.g. [12]) so that the Herbst’s bound deteriorates. Part (ii) of the proposition partially
takes care of these extreme situation, at least for not too large valuesi®ive now
explain (see also Proposition 5.3 below for more technical details). Assume that each s
V, is a cube of sidé, multiple of the basic length scaleand suppose that =>", 1,

where
foz = Z fx-

xeVy
d(x, V)= 3o

Then the constank’, appearing in part (i) of the proposition becomes

Ky =€e, 37 3 IVey, (f) I + 3 Var(f)e2 0.

o x¢Vy o
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The second term in the above expression is, apart from the con&@fi(€, exactly

the contribution given by a naive Taylor expansion. The first term is instead similar
to the constank , discussed above but with the following important difference. The
logarithmic Sobolev constani, is now multiplied a termy_, |V, pey, (fu) II2,, Which,
apart from trivial constants, is different from zero onlyxif¢ V, and in that case is
proportional to|V|e ™0 because of the mixing assumptions. Moreover, for extreme
values of the chemical potential, the “masgs’tan be taken proportional to the chemical
potential itself so that the “effective” logarithmic Sobolev constarit’®, becomes
very small and the Gaussian bound becomes more precise.

5.1. An application at low density

Here we discuss an application of our bound to a concrete case that will be importan
in the next section.

The setting is the standard multicanonical setting described at the beginning o
Section 3.

Given now a local functiorg with supportA, containing the origin and of diameter
smaller than 2 r being the range of interaction, and an intege€ jmax We define
G =3 ren, 8 — 1(go)], whereg, is the translate of by x. Let alsop; := |X_jw and
assume without loss of generality that< 1/2.

PROPOSITION 5.3. — Assume USM(C, m, ) and that there exists a constakt=
k(]| ® ||, C, m, 1) > 0 such that

2r,
2r.

1u(lgc)) <kp?ligllee Vx € A; such thatdist(x, A9

>
n(lg:) <kpjligllo VYx € Ajsuch thatdist(x, AS) <

Then, for anyy > 0 there exist positive constants= A(||®||oc, C, m, L, to, 7, || €|l 00> 50)
and B = B(||®||«, C, m, L, r, §g) such that

,u(e’G) < & ALY+ vy [0, 70],
v(€9) < B AL il vy € (0, 10].

Remark— Although the proposition is stated for any value of the density % the

most interesting application is when is very small (possibly depending ar).

Proof. —In what followsk will always denote a generic numerical constant depending
onlyon|®|,C,m,l, 1,1, d, S, |gllc @and whose value may vary in different estimates.
Let {C,}cr be a chessboard-like partition af; into cubes of sidé = 6/, / being the
basic length scale. A moment of thought suffices to convince oneself that we can patrtitiot
the index sef into 24 subsets{l,-}izil in such a way that mig_,cy,) dist(Cy, Cor) = lo
and min,c;, dist(C, A§) > lo. Accordingly we writeG = X G 4+ G, where

Gt — Z [gx _ M(gx)} and G© = Zga with 8o = Z [gx - M(gx)} .

X€EA; ael; xeCy
dist(x,Aj)glo
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Thus, using Holder inequality, we arrive at

, 2 e 1
ZHIIIM(é%+Dm )mu.
i=1

“(efG) <u (e(2d+l)tGeXt)

It is thus enough to bound from above a generic tere+916"”) and the boundary
term (€Y. Let us thus sef := G and, for any € I;, let V, be a cube of sidelg

and having the same center@f. Thanks to our assumptions on the functpand the
strong mixing, the constants appearing in the second part of Proposition 5.1 satisfy th
bounds

Var, (f) < klgpj.
OsG, (f) <kif, (5.4)
SUp|| Vi pta (I3, < kp3,

x¢Vy

where the latter inequality follows from any standard low activity expansiqgmy iis
small and from the mixing assumptiongf is “moderate”.
Let now 4, := uj, and write u(€7) = p(u; (€7)). It is not difficult to check that

the logarithmic Sobolev constant of the measprec,,, is not larger tharkln(%)
' J

uniformly in the boundary conditiom, because of the mixing assumption and the fact
that—In(p) is the order of magnitude of the logarithmic Sobolev constant of a Bernoulli
measure of parametgr as p — 0 (see e.qg. [12]). If we now apply the bound (ii) of
Proposition 5.1 tqe; (€/) we get

(s (€)) < M(e"‘f(f))e’zk"./z'l‘f‘ vt € [0, 10].

It remains to bound the correction term(e*/"). It suffices to apply part (i) of
Proposition 5.1 together with the observation that< k In L because of the previous
remarks and that

2 _
D Ve (Dl < KLY

xEA":

because of the mixing assumption and the hypothesis dnitist(C,, AS) > lo (see
also (5.4)). In conclusion

) 2), 617 d—1 21021 A
; :
[,L(em (f)) < d kp; LY== InL < d kpS 1A
so that
O] 2kp2|A ;
M@mmM)gémwy (5.5)

Let us finally analyze the boundary temie ™). We could repeat word by word the
argument that was used to bound the ter@*/ (")) to get

M(e[Gext) < elszd_lmL
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which is certainly smaller than the r.h.s. of (5.5) hfr) '”(TL) If instead,o]? < '”(TL) then
we proceed as follows. We decompoS&* into the sum of a finite (only depending
onr) number of termg5®, each of the fornG®" =3 . [gx — 11(gx)] WhereE; is

a subset of the “layer{x € A; such that digtx, AS) < lo} and it has the property that
min, ,cg, dist(x, y) > 2r. The choice of the setB; is somewhat arbitrary but it causes
no problem (just WriteZ? = |, <z, 7¢ Q2 (x)).

Givenx € E;, we letV, = A, + x and we bound from above the quantjtye’ ")
using part (ii) of Proposition 5.1 with the se{¥.}.cg playing the role of the sets
{Valaer- With the obvious notation and thanks to our hypotheses on the fungtios
get

Var, (g.) <kllgl%0;,
056 (g:) < 21glloo>
2
s;pllvyuvx (g5, <klglZp;.
AL

Thus

u(e,GexLi) < etzcﬂp_,L‘I*1 < e,kade—lmL Vi e [O, lo]- (5.6)
In the last inequality we have used the bound< kInL. In conclusion, by putting
together (5.5) and (5.6) we get

w(€9) <Al v e [0, 1)

for a suitable positive constadt= A(||®||s0, C,m, 1, tg, 1, d, ||g]l0os 50)-

In order to prove the analogous bound for the multicanonical measuwve observe
that the functionG can be written a$; = G, + G,, whereG; and G, have the same
expression of; but with the sum ovex restricted to two halves of the sat;. Then

b(€9) < v(e¥0) B(e207)?
and we can apply to each of the factors the bound (see Proposition 3.3)
v(eZ’G") < Bu(eZ’G"), i=12
The final result follows at once from the bound on the grand canonical expectation.

5.2. An application to “normal” densities

Here we discuss another situation, similar to the one just analyzed, that will play ar
important role in the forthcoming sections. Contrary to Proposition 5.3, the interest of
the results stated below is when the dengitys not too small. That should explains why,
in most of the estimates given below, we allow certain numerical constant to depend ir
some unspecified way gy, without worrying about the case whepn — 0 asL — oo.

The setting is that already described in the previous paragraph but the fudttion
is different. In order to define it, lefC,}.c; be a collection of cubes i ; of sides
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lo > r multiple of 7, such that for any # B, d(Cy. Cg) > I5'> andd(C,. dA) > Iy/°.
Let C":= {x € C,: d(x,C%) > 13"}, let ¢ =y, CInt and denote by:, = |I]| the
number of such cubes.

Givenn e Q, ands € [0, 14], write 117 (-) = u:* ") (-) to denote the grand canonical
Gibbs measure o€, with boundary condltlony and constant chemical potentialy, s)
such thaw " (N¢,) = s. Whenever is also an integer, say=n € [0,1, ..., li¢]],
we will use the standard notatiord, , for the corresponding canonical GIbbS measure.

Consider now a local functiog with supportA , containing the origin and of diameter
smaller than 2 such thatg (0) = 0 where (s the configuration identically equal to zero.
Then we defing®(o) = g,(0) — §o(x) and

Em)= > ulr(g). &m =& Nc,m), &°%mn :=&(0 N, ),

xeclnt

gmmy=> v¢ (&) & =g (n Ne, (), (5.7)

xECt'xm

wheres is such that for one (and therefore all) cuig %ég’g(s)h:ﬁ =0,7=p;l§. By
definition

ue O (S o g Ney)

uer @ (N, Ne,)

so that, if conditiolJSMT(C, m, ) holds,cS <8(C,m, 1, ||glls) uniformly in L.
Finally we define

s=H

G,(n):=>_[go(m) — i(g2)].
G.(n) =Y [E2a) — ()],

GO(n) =S [62%n) — u(£29)], (58)
GHp= ) [er—nlg)]-
xeA ;\Cint

PROPOSITION 5.4, — Assume USMIC, m,[) and fix g > 0. Then there exists a
constantA = A(C,m, [, ty, ||gllo, p;) Such that

~1/2

(i) (@) <&M vy,

(i) pu(€©@00) <&’ v e 0, 1,
(i) p(@Ci6n) <&Mt vy,

(V) (€9 <&M vie [0,y

The same bounds hold, but with an extra facBe B(||® ||, C, m, L, 1, §) in front of
the exponential, ifv is replaced by the multicanonical measure
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Proof. —In what followsk will always denote a generic numerical constant depending
onlyon|®|,C,m,l, t,rd, | gl and whose value may vary in different estimates.

(i) Let u; := pf, and writeu (€ %) = pu(u; (€ °)). We simply apply part (i) of
Proposition 5.1 to the functiop ; (¢ Gt together with the observation that, thanks to
the mixing condition, sulpcu; <k(C,m,l, p;,§). The reason why we refrain to apply

directly such an argument ta(¢ Y is that it is possible that the global logarithmic
Sobolev constant, is very large, up to ordetIn L, because in some atory;, i # j,

the density is either very small or very close to one. As we will see, conditioning on the
exterior of A ; is a simple way to take care of such a nasty possibility. Since

STV G, < kLl 2

X€EA;

we get

_1
I,L(/,L] (e[Gext)) < M(eluj(cext))elszdlo 2 . (59)

The term w(€%(@®9) can also be estimated by the Herbst argument if we recall
the observation that, under the mixing assumption,< kInL (see the proof of
Proposition 5.3). We get

cu 2| Vanf (G215, < kL4HnL
xeA
so that
M(e[llj(GeXt)) < etszd‘llnL' (510)

Clearly (5.9) and (5.10) complete the proof.

(ii). First we observe that, because of the equivalence of ensembles (see Propos
tion 3.2 point (1)), supll(g — &)l < k. Next, givena, let V, be an(%lé/2 — 2r)-
neighborhood of the cub&, . Forly large enough the sef¥,} satisfy the condition of
Proposition 5.1. Moreover

1
9o, (82— ). < {ke-%mloz f vV,
0 otherwise,

for [y large enough.
Thus, part (ii) of Proposition 5.1 together the usual conditioning = (1, (-)) give
(see also the argument leading to formula (5.10))

(GG ¢ etzL"klg”’M(em,,- (Gu=Guy
< ezZLdk(15‘1+L—1|n L)
—d
<" vr € [0, 1o] (5.11)

for L large enough.
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(iii). Notice that

k if 0,7 Cy,
Vi (€20 — &2 || {kl - iic’a,

because of Lemma 3.1 point (i) @fl) and (2). Therefore we can apply the same
reasoning leading to (5.11) to get

(e CI-0n) < @Gy, (5.12)

and the sought bound follows far large enough.
(iv). We want to use part (ii) of Proposition 5.1.
1

As in the proof of point (i), letV,, be an(%lg — 2r)-neighborhood of the cubg&,. For

lp large enough the set¥,} satisfy the condition of Proposition 5.1 and because of the
mixing assumption

1
911, (529 < {" A
0 otherwise,

for [ large enough.

Let us now compute Va(géf’g) and Osg(éﬁ’g). For this purpose we first observe,
that, by the very definition of and the constance of the chemical potential inside
we have (see point (ii) of pat®) of Lemma 3.1)

=2
g(on)—g(on)_/ds/dz 5(0t)<k( - (5.13)
I’l
Therefore Osg(£2%) < ki¢ and @, := Ne, (n))
k
Var, (§,°9) < oz v (e = D)l
0
k k
< lﬁ HMVQ ((not - /LVa(na))4)|’ lZd ”MVa(na) ”oo
0
<k (5.14)

again because of the mixing condition. The statement now follows at once from point (ii)
of Proposition 5.1 applied t¢ = G%.

Finally the statements for the multicanonical measure follow exactly as in the proof
of Proposition 5.3. O

6. On the covariance of f2 with sumsof local functions

In this section we discuss some important bounds on covariances of the formr
v(f?, G), wherev is a multicanonical measure ol = U’maxA as in the standard
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multicanonical setting of Section 3, an arbitrary function withv(f?) =1 andG =
Dxen,; 8x for some 1< j < jmax, Whereg, is the translate by of a local functiong
with small support around the origin.

Roughly speaking our main goal is to bound‘?, G)? in terms of the only quantities
that enter in the logarithmic Sobolev inequality, namely the entropy (At and the
Dirichelt form &, (f, f), but we want to keep track of the right dependence on the volume
or, more precisely, on the number of particlésin A ;. Moreover, for reasons that will
become more clear later in the paper, we have another constraint in thaf Brust
appear multiplied by a very small constant times the volume.

In order to appreciate the difficulty of the problem, we notice that, sificenters
as f2, one of the natural tool to bound covariances, namely Schwarz inequality, become
useless since na”-norm of f, p > 2, enters into the logarithmic Sobolev inequality.
This is precisely one of the main technical difference and new challenge between th
Poincaré inequality (wher¢ appears linearly) and the logarithmic Sobolev inequality
for conservative stochastic dynamics.

A natural counterpart to Schwarz inequality in this context is the so celiapy
inequalitythat can be stated as follows.

LEMMA 6.1. — Let (22, F, u) be a finite probability space. Then, for any- 0 and
any real valued functiong, G on  with p(f?) =1,

B(1G) < TIn((e) + T Ent, (1) (6.1

Proof. —Itis an immediate consequence of the following Young’s inequality, valid for
allu >0andallv: uv <ulnu+€& —u. O

In our case we can assunte of zero mean w.r.ty (because we are taking the
covariance ofz with £?) so that it is natural to expect (see Section 5) a Gaussian bound
of the formv(e¢) < €°K14i for all t > 0 and some constat that may depend on the
particle density. If that is the case, Lemma 6.1 gives

v(sz)gtKlAj|+%Entv(f2) Ve > 0. (6.2)

If we finally optimize over the free parameternamely we take? = K\1A,| Ent,(f2),
and we assume, without loss of generality, thaf>G) > 0, we get

v(£2G)? <4K|A; | ENt(f2). (6.3)

Let us pause for a moment to clarify (for the alert reader only) more explicitely how
we plan to use the results of Section 5. In that section in fact, Gaussian bounds on th
canonical Laplace transform @f were established under the hypothesis of vanishing
grand canonical (not of the canonical) averagesofMoreover the resulting estimates
are distorted Gaussian bounds because of the presence of an extra cBristaont of
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the exponential. Thus, in reality, (6.2) is slightly more complicated and looks like
2 1 1 2
v(f% G) Su(G)+ SINB+1K|A;|+ ZENG (%) Vi >0.

The two extra termgy(G) and% In B are just a little nuisance; the first one can in fact be
handled quite easily using the equivalence of ensembles while the second one becom
harmless by choosing the “optimal’always greater tham ; |‘%.

Let us continue our informal discussion. Lét= |A_1,\ Ent,(f?) and letzy be some
large number independent of the volume and particle density. ¥ 1o, i.e. |A;]| <
% Ent,(f?), then trivially

2 1
v(£2G) < IGIZ < lgliA 1A ;] < ||g||§ot—2|A,-| Ent, (£?) (6.4)
0

which is like (6.3) but with a smaller constant in front of ;| Ent,(£?) if 1o is large
enough. In other words, if. > 7y a simpleL,, estimate gives a better result than the
entropy bound.

In order to understand this point we remark that, on the basis of the central limit
theorem and for “normal” values of the particle density Ay, one expects the
distributiond P(G) of the random variablg” . A 8x 10 be close to a centered gaussian
with variance proportional tdA;|. If this is the case, then, far large enough, the
distorted distribution &,(G) «x €°dP(G) becomes concentrated on the largest value
of G and the gaussian bounde’¢) < &°K14il becomes unnatural and certainly worst
than the trivial onev(€¢) < €19I=. On the contrary, for “moderate” values afthe
distortion only moves the center of the gaussian and in this case the entropy inequalit
will perform better.

Thus, in what follows, our strategy will always be, roughly speaking, the following.
Depending on the ratio between the entropy and the volume, we will either apply the
entropy bound with the optimaland appeal several times to the results of Section 5 or
we will apply the trivial L, bound. It remains to explain how we get in both cases a small
constant in front of the entropy. For small values of the density or large values of the
entropy it will follow quite easily from the results of Section 5 (see Proposition 5.3). In
all the other cases we will have to appeal to a partial average argument, almost identic:
to the one used in [14] and [10] under the name of “two-blocks estimates”, in order to
reduce the fluctuations of the functigh

We now explain more precisely our results.

6.1. Low density case

Here we discuss our first result in the low density regime.

PROPOSITION 6.2. — Assume USMC, m, [) and that there exists a constakt=
k(]| ®|ls, C,m, 1) > 0 such that

1n(lgx) <kp?liglloo  Vx € A; such thatdist(x, AS) > 2r,
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n(lg)) <kpjligllee  Vx € Aj such thadist(x, A§) < 2r,
[Glloo <kN;.

Then, for anye > 0O, there existsC, and pg such that for allp; < po, for all function f
with v(f?) =1,

v(f%.G)° < N,(C. +€Ent (f2))

for L large enough.

Proof. —We can assumg(G) = 0. As usual, in what followsk will always denote a
generic positive numerical constant depending onlyj @i, C,m, [, r, d, 8o, ||gllcc @nd
whose value may vary in different estimates.

Fix ¢ > 0 and f with v(f?) = 1. Let M > 0 be an arbitrary, large constant that will
be fixed further on and lef = L (l v M Ent,(f?)). We distinguish between two cases.

In the first one, we supposg> M. According to the general discussion we can safely
apply anL, bound to get

k
v(f2.6)* < 2GI% <kN? < N Ent(f7), (6.5)

where we have used the hypotheses| 6, and the definition of..
In the second case, we suppose. M and we first write

(2 G)? < 20(£2G)% + 2v(G)2. (6.6)

Using the equivalence of ensembles (see Proposition 3.3) and the fagi(tipt= 0,
[v(G)| < k for some constank. Thus, we can focus our attention on the first term
v(f2G)>.

By applying Proposition 5.3 withg = M, we get that there exist constants B
depending o ® ||, C,m, 1, to, 1, || € lls, 30 SUCh that

InL

InL
0(€0) < BEAL A — peAni

Thus, by applying Lemma 6.1 with= r,,, we get

2
v(f26)* < (;InB + 1, AN; [p,- - InTL} - ; Entu(f2)>

M

Now, from (6.6), (6.5) and (6.7), one can choose flstarge enough and thes;, small
enough and. large enough in order to conclude the prootl

<kN; <1+ (MA2 {p, + InTL} i) Entv(f2)>. (6.7)

6.2. Normal density

Here we treat instead the case of “normal” dengitynamely we assume thaf > po
for some constang, independent of..
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PROPOSITION 6.3. — Assume USM(C, m, [). Then, for any > 0 and any0 < pg <
2, there existsC, such that for allp < p; < 3

v(f2 G)? < |AI[Ce + e ENt (£2) + L2E,(f. £)].

Proof. —Fix f with v(f?) = 1, together withe > 0, po > 0 andM large enough (how
large will be specified later on).

As in Proposition 6.2 we defing? = A ‘(1 v M Ent,(f?)) where the number of
particlesN; has been replaced by the volumej | because we are assuming that> po.

If ., > M, then we can proceed as in (6.5) to get

W(/%.G)* < 1A BNt (/) (6.8)

and the proof is finished provided thét was taken large enough.

Let us now examine the much more complicate casg €fM.

We define{C,}.c; to be a collection of cubes of sidg>>> r multiple of/ inside A ;,
such that

0) dist(ca,C,s)>l§ Va # B,

1

(i)  dist(Cq,0A;) 21 Va,

_1
(iii) ‘Aj\Uca <l 2|A ).

Clearly such a construction is always possible. Define @8o= {x € C,: d(x, CS) >
1/4} andCint — U, Cmt

Next we observe that without loss of generality, we can repladey G — 3 N,
§ being an arbitrary constant independentrpbecauseV,; = N; almost surely. Our
choice of§ will be made later (see (6.16)) but we ant|C|pate that it will be almost
independent af and that undeSMT(C, m, 1), there exists a constadtC, m, [, ||g]loo)
such that < §(C,m, 1, ||gll«) uniformly in L. Finally we setg’ (o) := g.(0) — o (x)
and

G™= Y [¢—n(g))],

xeA;\CMt

GM=" [g0—u(e)]-

yeCint

Then we write
v(fz, Gext)2 < ZU(fZGeXt)z + 2])((;ext)2
1
<k|A] [1+ (z(;lK + M) Entv(fz)} + kig*

<A |(k + £ Ent, (£?)),

whereK is some constant independentighbut possibly dependent o and the last
inequality holds ifM andly are chosen appropriately.
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Above we have applied Lemma 6.1 witk= 7, together with Proposition 5.4 point (i)
to bound the first term and the equivalence of ensembles (see Proposition 3.2 point 1
together with (iii) above to bound the second one.

We now turn to the relevant term( f2, G'"™)?.

Let Fq be theo -algebra generated by the random variabbe(sx)}xe,\\u ¢y (Nalaer
whereN, (o) := 3, ., o (x). Then, by the formula for the conditional covariance, we
get

(f Gmt) < 2v(v(f2 Gt | fo))z + 2v(f2 U(Gim | fo))z. (6.9)

For simplicity letvo(-) := v(- | Fo), f&:= f?/vo(f?) ands? = A M_Ent,, (f2). Then the
entropy inequality (Lemma 6.1) gives

H 1 in in 1
vo( /5. G™) < = In(uo (o™ 4 = Ent, (£3).

*

Notice thatyg is the product of standard canonical measures on each Culvégth a
certain number of particles and boundary conditions. Thus a simple Taylor expansior
gives

v (€@ —0(G™) < @KsEIAL

whereK now may depend ofy. Thus
2 int 1 2
vo(fo, G™) < KIAjls. + —Ent, fg
and similarily forG™ replaced by-G™. The definition ofs, yields

vo(fOZ,Gim) 2K2<M+ )|A|Entvo(f0)

Finally, sincevy is a product measure it certainly satisfies the logarithmic Sobolev
inequality En;o(fo2) < C(lp)€y, (fo, fo), and we can conclude that

v(v(F2 G™| Fo)) 2 < K'E(L. )IA]. (6.10)

whereK' = K'([[®lloo, lIglloc, 7 Lo, M).

The second term in the r.h.s. of (6.9) needs some more reductions. We recall first son
definitions introduced in Section 5.

Givenn € 24, andn € [0, ..., [§], write u" () := g™ () to denote the grand
canonical Gibbs measure afi, with boundary conditionn and constant chemical
potential(n, n) such thatu:* " (N¢,) = n. We will use the standard notatiof, |,
for the corresponding canonical Gibbs measure.

With this notation we define (see (5.7)),

Emn)= Y ul"(gx—80(x)); & :=&)(n. Ne,(m).

xECInI
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gmmy= > v (g —80(x); gi(n) = gl(n Ne,(n)

xec/nt

and

G,(n) :==v(G™| Fo) =>_[g2(m) — n(g)].

o

G.(m) =[5 — ()]

o

Then we write
v(fZ, V(Gim | j_—o))z
=v(f% G, <M (fAG, — G +4(n(G, — G)) +2v(f% G,)°. (6.11)

Let us examine the three terms separately.
Using Lemma 6.1 with = 7, combined with (ii) of Proposition 5.4, we can bound the
first term by

MA?2 1
4 (f2G, —G,)) < kIA] [1+ (le + M) Entu(fﬂ, (6.12)
0
whereA = A(C,m, 1, M, ||g|l«, po) iS the constant appearing in Proposition 5.4.

Because of the equivalence of ensembles (see pbjmf Proposition 3.2) and the
fact thatu(G, — G,) =0

4(v(G, — G,))* < kI, (6.13)

In conclusion, by a suitable choice df andly we get
M (F2G, — G) +4(v(G, — G,))’ < |A|(Ce + £ Ent, £2) (6.14)

for a suitable constard, .

So, it remains to bound the third term in the r.h.s. of (6.14}%, G,)?. Here we are
(unfortunately) forced to distinguish between two subcases.

@t <M/,

We can appeal to Lemma 6.1 with= 7, combined with (iii), (iv) of Proposition 5.4
to get

V(fz’ Gu)z < 2v(f2 Gu)z +2[v(Gy) — “(Gu)|2

i + %) Entu(fz)} + kig?

<IAjI(Ce + € Ent, f?) (6.15)

for a suitable choice a#1, [y and for allL large enough.

(b) M/I§ <1, <M.

In this case we can assume, without loss of generality, [that is so large that
12 =L MEnt,(f?).

* T |A]

MA
<iigl|t+ (4
0



N. CANCRINI ET AL./ Ann. I. H. Poincaré — PR 38 (2002) 385-436 427

We first need to simplify a bit the random variallg, by reducing it to a sum of
variables each of which depends only on the number of particlé¥'irand not also on
the boundary condition outsidg, .

Let£22(n) := £2(0, n) and letG () = X, [&0 (Ne, () — w(&29)]. Notice that, by
translation invariance insidg ;, éﬁ’g(n) is independent od.

Using once more Proposition 3.2 we haveG, — G,%)| < kid. Therefore

2 2 2
v(f% Gu) " <k[(f2(Gu—GR))" + kg +v(f2 G2)7].
Now, using Lemma 6.1 with = ¢, together with Proposition 5.4 point (iii), we get

2

v(f2(G, — G2))? < kN, <1+ MA

1
7 +—Entvf)

In conclusion
V(2 G2 <IAJI(Ce + £ BN £2) + kv (2 G2)°

for suitably choser/ andiy.

We are left with the estimate of the tero( f2, G2)2. It is at this point that the
substraction with the free paramegemade at the beginning becomes important.

Let § be such that for one (and therefore all) cubg, déa “(8)|s=7 = 0 where
n = pj|Cy|. By definition, § is independent otx and it is given by the following
expression

0,10,
ue, - )(ng(j'mgx»NCa)
5= MO”) (6.16)
(Nclnt NC )

so that, thanks to the mixing hypothesusq,\ k uniformly in L.
Notice that with this choice,

(n —n)?

n

<k

1£2%n) — &%) | = ‘/ds/dt S (0, 1) (6.17)

because of Lemma 3.1 (point (ii) ¢2)). In turn (6.17) implies, in particular, that

V(e300 —&20m)|) <kpu(|g20—£2%m)|) <k (6.18)

again because of the mixing condition.

LEMMA 6.4. — Assume USM(C, m, ). Then, for any > 0, there exists a constant
C, such that for all functionf,

v(£2 G <|ASI[Ce + Co L2E,(f. ) + e Ent (7).
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Proof. —First write (1, = N¢, (1))

2
(72 69) < 20123 62 %na) — 6% )+ 20 (X (g %0 — 8120 )

ael ael

2

2
<2 (fZZ (65 %ng) — s;i’Q(ﬁ)]) R

ael

2
A .
<o (Y[ %0) - £1%0] ) + e (r2),

ael
where we have used once more the equivalence of ensembles, Proposition 3.2 point (2
together with (6.17) and the fact that> 77
0

We can thus focus our attention on the relevant te¢gf? >, éa (na) Sa ‘(n)])z
Thanks to (6.17) we can write

u(fZZ[sj’Q(na) - sjg(ﬁ)]) <kv ( 723 (e — - ”)2) . (6.19)

ael ael

We now analyze the r.h.s. of (6.19). Let denote the average (normalized sum) over
the cubeqCy}sc;. Thanks to the conservation law we expégs) to be quite close ta.
In fact, it is easy to check thatg) —n = ﬁ erAj\c[,oj — n(x)]. Notice that

2.

y

2

w2 (pj—n<x))r .

xeA;\C

<klA;\ CPR.

Moreover, using the mixing condition together with the Poincaré inequality.fore
also have

InL
‘u( > [pj—n(X)D‘éknTlAjl,

xeA;\C

Var, (3 (o) =) ) <kiA \CP.

xeA;\C

Thus
2

v<fzz((nﬁ)ﬁ—ﬁ)2>2< |A1|2 (7] (pf‘"(’“))b

o xeAj\C

InL\*
<k(55) 1 +k|A 310\ CRENL(£)

<e|A;|Ent, (f?) (6.20)
provided thafy and L are large enough.
Above we have used Lemma 6.1 together with part (i) of Proposition 5.1 applied to
the functionf = F — u(F), F = [Creanc(o) = n(x))]2, the boundv(€F) < A (e’
and the hypothesis > M/ 4.
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Therefore we can safely add and subtrax;;t ) inside the r.h.s. of (6.19) and confine

ourselves to the estimate of 23", ., “==22%)2 we get

(75 e ey

ael

2

LS A5 e

Since, by the strong mixing assumption and Proposition 3.3,

2 2
v(g) w<w) <k
n n

the second term in the r.h.s. of (6.21) is bounded jdy? < k% Ent,(f?) because of
the hypothesis, > M/ I§.
It now remains to bound the first term of (6.21). At this stage we cannot appeal to the
same old argument based on the entropy inequality and we must proceed differently.
Following [19] we introduceF, g, the o -algebra generated by the random variables
{o (x)}xeA\(caucﬁ), and we write

()

_ 2 _ 2
v(v(fz, (ng ﬁl’lﬁ) 7'—(1,/3))‘4- v(fz,v<(n“ ﬁn,g)

_ 2
v(v(fz,% a,ﬁ>>’+ka

where we have used once more the equivalence of ensembles (Proposition 3.3), tf

mixing assumption and the fact that (n4) being the number of particles @, (Cp) is

weakly sensitive to the boundary conditions outsitle(Cg), to bound the second term.
Define now

<

7))

<

Eas(f )= 3 (Vo) | Furp).

x,yeCyUCg

Obviously there exists a “spectral gap” constétily) such that
v(fs [ 1 Fap) < Clo)eup(f. f) VI
Thus

(e

1
2

NI

(noz - nﬁ)z

(v(F* | Fap))

(U(f, v }—a,ﬂ))

e¢]

I

n
1

SHCUN? (Eup(F 1) (0(F2] Fup)) .

NI
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Schwarz inequality yields
(

Finally, from (6.22), we get that the first term in the r.h.s. of (6.21) is bounded from
above by (defin@, g(-) :==v(- | Fo )

2 5 (ng —np)?\1?
W{zﬁ:v(f 7 )}

A
C”(lo)z (Eap(fs D) +"<|z ')
0

(72 P2 1 7 ) ) < €l antr 1) (6.22)

C”(Z)Z (Zvaﬁ VoV )+ D (VY fT)

x,yeCqy x,yeCg
k
+> va,ﬁ([vxvyflz)) + 7 1A Ent (1)
vec;

k
<) A\ (B+ LAECS, )+ 1A En (1)

sincet, > M/I§.

Above we have used once more the “path” bodind, . A V(Vay f V2 <kLI2E,(f, f)
given in (3.15). By choosingy large enough we get the sought result also in this
case. O

6.3. Applications

Here we discuss an application of our results which is directly relevant for the proof

of the diffusive scaling of the logarithmic Sobolev constant for the Kawasaki dynamics.
Fix i, j € {1, ..., jmad With i # j and letp = % Clearly 2(p; + p;) < p <
pi + pj wherep; andp; are the densities in; andA Without loss of generality we

assume thap; < p which impliesp; > p;. Let also

g(@) =[O o), G=> g,

xXEAN;

ho(o)=[e VO _1(1-0@), H:=) h..
ZEA;
Notice thatg, satisfies the hypotheses of Proposition 5.3 simply because0 if there
are less than two particles (spins equal to 1) inside its support. SimilaghyO if there
is less than one particle inside its support. In particiifdf| . < kN;.

PROPOSITION 6.5. — Assume condition USMT, m, ). Then for anys > 0 there
existC, and po such that for anyf with v(f?) =1
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(i) if p<po
2
v(f% > gxhz) < pIAPC. + e Ent (£7)];
re
(i) if p> po

2
012 F ahe) <IAPIC,+ CL2ES )+ BN (f)

XEAN;
ZEA_,‘

provided that A| is large enough.

Proof. —(i). Fix ¢ > 0 and observe first that, thanks to Proposition 6.2, we can safely
replaceH andG by H — u(H) andG — u(G), respectively. The extra terms we get are
in fact bounded by

IL(H)P(0(f2 G))? < |A12N: (C + e Ent, (£2)) < plAIR(C. + £ Ent,(£2)).

2|A;| + pil 0T A
RGP (2. 1)< (2 'p’f' |
J

< PIAP(C, + £ ENt, (£2))

provided thatp is small enough. Above we have applied Proposition 6.@ tandp; H
respectively. Note that in the cage> p which impliesp; < p; every thing is the same
except that we apply Proposition 6.248{. From now on we will writeG for G — 1 (G)
and similarily forH.

Next we writeH = H™ + H® where’ ™ is the sum over thosg's in A; such that
Aj, C Aj andH®the rest. Similarily forG. Thus we have to bound four terms

>2N,-(C8 +eEnt,(f?))

v(fZ’ GintHint)z’ v (fz’ GintHext)z, v (fz, GextHext)z, v (fz, GextHint)Z.

All the mix terms can be treated similarily and therefore we will only analyze one of
them e.gv(f?, GMHEY?2,
If we combine part (i) of Proposition 5.1 together with Lemma 6.1 we get

. k 1 2
v(f2 MY <k igf)(; + the, JAP1OTA ] + - Entv(fz))
(>
<kIAPP 0t A e, BNt (£2)
<kp|APENL (£2) (6.23)
for |A| large enough, where, denotes the logarithmic Sobolev constanfuoiv.r.t. to
the Heat Bath rates and we have used the fact (see the proof of Proposition 5.3) th
¢, < kIn L uniformly in the (vector) chemical potential

We are left with the estimate of the “diagonal” temf2, G"™H™™)%. Let F; = Fj:.
Then
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v(fz, GintHint)z < kNij(v(fz, G | 2)2) + zv(fz’ Hintv(Gint | ﬁ))z
<SKNZN; (C, + € Ent, (f2)) + 2v(f2, H™0(G™| 7)) (6.24)

provided thato is small enough. In order to estimate the last term in the r.h.s. of (6.24),
we observe that, thanks to the strong mixing assumption, the faci.tiéat = 0, and
points (1) and (2) of Proposition 3.2 one has

k,Oi|8+Ai| if dist(x,A;))>r,

int int
IV (G 7)o < {kN,- if dist(x,0tA;) <r.

In particular

S [VaH ™0 (G™ | F) |12 < kolAll0T A 2.

)CEA_,‘

Thus, we can proceed as in (6.23) and get that alg&, H"v(G™™ | F;))? is smaller
thankp|A|3(C, + € Ent,(f?)).

To prove point (ii) the argument is unchanged with the only difference that now we
must use Proposition 6.3 instead of Proposition 6.2.
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Appendix A. Logarithmic Sobolev inequality for one dimensional discrete random
walks

Let Q = {nmin, mmin + 1, ..., nmax} b€ a finite subset of the integers and jebe a
positive probability measure di. We present a result, based on Hardy type inequalities,
to bound in a precise way the logarithmic Sobolev constant @fith respect to the
Dirichlet form of discrete random walks reversible w.pt. After that we discuss
a concrete example related to the distribution of the number of particles under &
multicanonical measure (see Section 3.7).

PrRoPOSITION A.1. — For all functions f on 2 we have

Nmax

Ent, (£ <20B Y (ym)Ay(m—D)[fn) - fin—D)%

n=nmin+1

whereB :=inf;[B, (i) v B_(i)], with

Nmax 1 n 1
B.(i):= o) ,
NOY nit‘ﬂ(,;y( )) n<znmax (k)> <k_§i;rl)/(k)/\y(k—l))
i—1 1
B_(i):= k) |1 —_—].
® ,if‘_p< 2 )> n(Zk nmmy(k))(é )/(k)/\)/(k—i-l))

k=nmin
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Proof. —The proof is a straightforward application of Hardy type inequalities (see [17,
Section 3]). Indeed, it's enough to consider the birth and death continuous time Markoy
chain (Metropolis chain) with transition rates

v A1 e -
c(n,j):{y(n) ng dFj=ntd, O (A1)
0 otherwise.

We now define a convexity assumption for the probability measure under considera
tion that will allow us to bound rather sharply the constBrdescribed above.

DEFINITION OF CONDITION CONV(c, 7). —We say thaty satisfies the convexity
hypothesis with parameters> 0 andn € €2, in what follows denoted by CONY¥, 1),
if ™17 < nmax— 1 < ci and similarily foriz — nmin,

yn+1) _ww

<ce a foralln>n,

y (n)
— 1 n—n
yin=1 <ce‘(cﬁ) forall n <n,
y (n)
l cii—n)? i—n)2
e < y(n) < “_e"F forallneq. (A.2)

eV N
Remark— Sincey is assumed to be a positive probability measure, we can always
write it in the Gibbsian formy (n) = Z~texp(—H (n)). Then, if H is strictly convex
with “second derivative” bounded from below and from above byandc respectively,
and the minimum i, i.e.

1
—<HM+2)-2Hmn+1)+Hn)<- VneQ,
cn

c
n

(A.3)
H(+1) = H(),

then, if (¢, i1, nmax nmin) @re in the right proportion described @ONV(c, 1), y satisfies
conditionCONWV(c, 1n).

Our aim now is to prove that und€@ONV(c, n) the measure satisfies a logarithmic
Sobolev inequality with optimal constant proportional (dependingcprio n (see
Proposition A.5 below). For this purpose, let us first discuss some simple lemma that dee
with the different terms appearing in the constaBisi) and B_(i) of Proposition A.1.
Since obviouslyB < B, (1) v B_(n) we can restrict us to the case-n.

LEMMA A.2.— Lety satisfies CONYe, 7). Then

S vk < Cnn—ﬁy(n) forall n >+ 1,
k=n -

Yy <C=———y@m foralln<ii—1,
n—n

k=nmin

for a suitable numerical constaiit depending only om and not on.
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Proof. —Fix n > n + 1. By using the definition o€ONV(c, 1) together with a simple
telescopic argument we get

nmaxy(k) nmaxk—ly(j+1) nmax k—1 I’l)
2w =G ZH”’( =)

k=n )/(l’l) k=n j=n

k=n j=n
(k —n)(n —n) 1
<CZeXp<_ 2cii ) - l exp(— (n—n) n)
k>n 2cn

But, (n — n)/n < (nmax— 1) /i < ¢ and therefore

1-—ex (n — 1) _1<C n
(ool 52)) e

for some constant depending only on. A similar computation gives the corresponding
result forn < n — 1. This achieves the proof.O

LEMMA A.3. - Lety satisfies CONYe, 7). Then

1 n 1 _

> <C—— foralln >7n+1,
k=n4+1 ')/(k) n—n )/(I’l)

n—1 —

n 1 _
> <C-— forall n<a-—1,
2y S Ti—nym)

for a suitable numerical constaiit depending only on.
Proof. —The proof is practically the same as that of Lemma A.2 and it is omitted.
LEMMA A.4.— Lety satisfies CONY, 7). Then

In(%><c(1+(” )> forall n >+ /a,
maxy(k)

n

n 2
(ﬁ) C(1+(n nn)) foralln <i— i,

whereC is a suitable numerical constant depending onlycon

Proof. —If i is smaller than some large constant depending tvere is nothing to be
proved. Therefore we can assume thad large enough and we consider two cases.

In the first one, we suppose+ /i < n < nmax — ~/i1. By using the definition of
CONV(c, n) we get

Nmax nmax 1 n++/it 1 c
}:y@)> }: em(——m—k)) z;k_n?ﬁexp(—;(n—k))

1 1 1 4c

> Vin— exp(—g(n +i— ﬁ)Z) > = exp(—T(n — ﬁ)z), (A.4)
c  Jn n c n

where, in the last inequality, we have used the fact that v/ — 7)2 < 4(n — i1)? for

alln>n+i.
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In the second case, We SUPPBSE nmax — ~/71. AN easy computation gives
Nmax nmax 1 1 1 c
0> 155 Lo ~Ci—a) > 2L oxp( - )
;y() Z p( (1 =07) > —=exp( —=(i—n)

> C‘lexp<—%(ﬁ — n)2> (A.5)

for some constanC depending only orc. Finally the first statement of the lemma
follows at once from (A.4) and (A.5) by taking the logarithm. Similarly one proceeds
for the proof of the second part of the lemmaxn

We can now state the main result of the appendix.

PROPOSITION A.5. — Let y satisfies CONYe, 7). Then there exists a constaat
depending only om such that for all real functiong’ on

Nmax

Ent,()<Ci Y. (ym)Ay(n—D)[fn)— fn—D]% (A.6)

n=nmin+1

Proof. —Thanks to Proposition A.1 it is enough to bound from above the constant
or, what is enougtB, (7n) v B_(n). First notice that by symmetry we can only consider
one of them e.g.

nmax 1 n 1
B““Uifﬂ(%”")) '”(W)( 2 y(k)Ay(kH))'

k=n+1

Let us consider two cases.
In the first one, we suppose+ 1 < n <7 + +/a. Then, becausg ;™ y (k) < 1 and
xIn(1/x) <1lforallx €[0, 1],

(llzmixy(k)) '”(Z""‘: <k)) st

Moreover, by (A.2)

n

- Y. =1 oS 2)
> y(k)\cz exp( @ k))gc«/ﬁﬁexp(ﬁ(n n+1?)<C

k=n+1 k= _+1

for some constant’ depending only of.
In the second case,> i1 + /711, we apply Lemmas A.2, A.3 and A.4 to get

Nmax n = = 2 —
Zy(k)ln( — (k)) > y(lk)<c n_(1+(n _n)) i

Sy ) S i Jn—i

< Cn.

This achieves the proof.O
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