@article{AIHPB_2002__38_6_1071_0, author = {Zaitsev, Andrei Yu.}, title = {Estimates of the rate of approximation in a de-poissonization lemma}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1071--1086}, publisher = {Elsevier}, volume = {38}, number = {6}, year = {2002}, mrnumber = {1955354}, zbl = {1019.60017}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_2002__38_6_1071_0/} }
TY - JOUR AU - Zaitsev, Andrei Yu. TI - Estimates of the rate of approximation in a de-poissonization lemma JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2002 SP - 1071 EP - 1086 VL - 38 IS - 6 PB - Elsevier UR - http://archive.numdam.org/item/AIHPB_2002__38_6_1071_0/ LA - en ID - AIHPB_2002__38_6_1071_0 ER -
%0 Journal Article %A Zaitsev, Andrei Yu. %T Estimates of the rate of approximation in a de-poissonization lemma %J Annales de l'I.H.P. Probabilités et statistiques %D 2002 %P 1071-1086 %V 38 %N 6 %I Elsevier %U http://archive.numdam.org/item/AIHPB_2002__38_6_1071_0/ %G en %F AIHPB_2002__38_6_1071_0
Zaitsev, Andrei Yu. Estimates of the rate of approximation in a de-poissonization lemma. Annales de l'I.H.P. Probabilités et statistiques, Volume 38 (2002) no. 6, pp. 1071-1086. http://archive.numdam.org/item/AIHPB_2002__38_6_1071_0/
[1] On the asymptotic normality of Lp-norms of empirical functionals, Math. Methods Statist. 4 (1995) 1-19. | MR | Zbl
, ,[2] Approximation theorems for independent and weakly dependent random vectors, Ann. Probab. 7 (1979) 29-54. | MR | Zbl
, ,[3] Probability and Metrics, Lectures Notes Aarhus Univ., 1976.
,[4] An Introduction to Probability Theory and its Applications, Vol. II, Wiley, New York, 1966. | MR | Zbl
,[5] E. Giné, D.M. Mason, A.Yu. Zaitsev, The L1-norm density estimator process, Ann. Probab., 2001, Accepted for publication. | MR | Zbl
[6] Estimates of the Lévy-Prokhorov distance in the multivariate central limit theorem for random variables with finite exponential moments, Theor. Probab. Appl. 31 (1986) 203-220. | Zbl
,[7] Estimates for quantiles of smooth conditional distributions and multidimensional invariance principle, Siberian Math. J. 37 (1996) 807-831, (in Russian). | MR | Zbl
,[8] Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments, ESAIM: Probability and Statistics 2 (1998) 41-108. | Numdam | MR | Zbl
,[9] Multidimensional version of the results of Sakhanenko in the invariance principle for vectors with finite exponential moments. I; II; III, Theor. Probab. Appl. 45 (2000) 718-738, 46 (2001) 535-561; 744-769. | Zbl
,