Estimates of the rate of approximation in a de-poissonization lemma
Annales de l'I.H.P. Probabilités et statistiques, Volume 38 (2002) no. 6, p. 1071-1086
@article{AIHPB_2002__38_6_1071_0,
     author = {Zaitsev, Andrei Yu.},
     title = {Estimates of the rate of approximation in a de-poissonization lemma},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Elsevier},
     volume = {38},
     number = {6},
     year = {2002},
     pages = {1071-1086},
     zbl = {1019.60017},
     mrnumber = {1955354},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2002__38_6_1071_0}
}
Zaitsev, Andrei Yu. Estimates of the rate of approximation in a de-poissonization lemma. Annales de l'I.H.P. Probabilités et statistiques, Volume 38 (2002) no. 6, pp. 1071-1086. http://www.numdam.org/item/AIHPB_2002__38_6_1071_0/

[1] J. Beirlant, D.M. Mason, On the asymptotic normality of Lp-norms of empirical functionals, Math. Methods Statist. 4 (1995) 1-19. | MR 1324687 | Zbl 0831.62019

[2] I. Berkes, W. Philipp, Approximation theorems for independent and weakly dependent random vectors, Ann. Probab. 7 (1979) 29-54. | MR 515811 | Zbl 0392.60024

[3] R.M. Dudley, Probability and Metrics, Lectures Notes Aarhus Univ., 1976.

[4] W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, Wiley, New York, 1966. | MR 210154 | Zbl 0138.10207

[5] E. Giné, D.M. Mason, A.Yu. Zaitsev, The L1-norm density estimator process, Ann. Probab., 2001, Accepted for publication. | MR 1964947 | Zbl 1031.62026

[6] A.Yu. Zaitsev, Estimates of the Lévy-Prokhorov distance in the multivariate central limit theorem for random variables with finite exponential moments, Theor. Probab. Appl. 31 (1986) 203-220. | Zbl 0659.60042

[7] A.Yu. Zaitsev, Estimates for quantiles of smooth conditional distributions and multidimensional invariance principle, Siberian Math. J. 37 (1996) 807-831, (in Russian). | MR 1643370 | Zbl 0881.60034

[8] A.Yu. Zaitsev, Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments, ESAIM: Probability and Statistics 2 (1998) 41-108. | Numdam | MR 1616527 | Zbl 0897.60033

[9] A.Yu. Zaitsev, Multidimensional version of the results of Sakhanenko in the invariance principle for vectors with finite exponential moments. I; II; III, Theor. Probab. Appl. 45 (2000) 718-738, 46 (2001) 535-561; 744-769. | Zbl 0994.60029