© 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved \$0246-0203(02)01135-4/FLA

ESTIMATION DE YULE-WALKER D'UN CAR(p) OBSERVÉ À TEMPS DISCRET

Sandie SOUCHET, Xavier GUYON*

SAMOS, Université Paris 1, Paris, France Recu le 1 février 2001, revisé le 23 mai 2002

RÉSUMÉ. – Soit $(X(l\delta),\ l=0,n)$ une observation discrète à pas $\delta>0$ de X, un CAR(p). L'estimation de Yule–Walker classique est biaisée et doit être corrigée. L'estimateur ainsi obtenu est convergent lorsque $T=n\delta\to +\infty$, asymptotiquement normal à la vitesse \sqrt{T} et efficace en variance. Le coefficient de diffusion est également estimé à la vitesse $\sqrt{T\delta^{-1}}$.

© 2002 Éditions scientifiques et médicales Elsevier SAS

 $Mots\ Cl\acute{e}s$: Modèle autorégressif continu d'ordre p; Diffusion gaussienne; Équations de Yule–Walker; Autocovariance et autocovariance dérivée; Biais d'estimation; Normalité et efficacité asymptotique

ABSTRACT. – Let $(X(l\delta), l=0, n)$ be a discrete observation at mesh $\delta > 0$ of X, a CAR(p). Classical Yule–Walker estimation are biased and must be corrected. Resultant estimators converge if $T=n\delta \to +\infty$, are asymptotically normal with rate \sqrt{T} , and efficient. The diffusion coefficient is also estimated, with rate $\sqrt{T}\delta^{-1}$.

© 2002 Éditions scientifiques et médicales Elsevier SAS

MSC: 62M10; 62F12

1. Introduction

Soit $W = (W(t))_{t \geqslant 0}$ un brownien standard. Un CAR(p) de paramètres $\theta = (\alpha, \sigma)$, $\alpha = {}^{t}(\alpha_{0}, \ldots, \alpha_{p-1}) \in \mathbb{R}^{p}$, est un processus gaussien à temps continu $X = (X(t))_{t \geqslant 0}$ dérivable à l'ordre p-1 vérifiant, si $X^{(j)}(t) = \frac{d}{dt^{j}}X(t)$ [4,8]:

$$dX^{(p-1)}(t) + \left[\alpha_0 X(t) + \dots + \alpha_{p-1} X^{(p-1)}(t)\right] dt = \sigma \, dW(t). \tag{1}$$

Si le polynôme caractéristique de (1) a ses racines de parties réelles strictement négatives, il existe une unique solution X, centrée, stationnaire et ergodique. On supposera par la suite que X est cette solution : $Y = {}^{\mathrm{t}}(X, X^{(1)}, \ldots, X^{(p-1)})$ est alors une diffusion gaussienne sur \mathbb{R}^p , centrée, stationnaire et ergodique.

^{*} Corresponding author.

Dans la suite, la notation j = 0, p signifie $j \in \{0, ..., p\}$.

Un CAR(p) peut être estimé à partir des équations de Yule–Walker (YW) basées sur les covariance dérivées ($D_{i,k}$) [8] :

$$i, j = 0, p - 1, \quad D_{i,j}(h) = \mathbb{E}[X^{(i)}(h)X^{(j)}(0)],$$

$$D_{i,p}(h) \stackrel{L^2(\mathbb{P})}{=} \lim_{T \to +\infty} \frac{1}{T} \int_{0}^{T} X^{(i)}(t+h) dX^{(p-1)}(t)$$

avec $D_{p-1,p}(0) = -\sigma^2/2$. Les équations de YW décalées de $h \leq 0$ s'obtiennent en multipliant (1) par $X^{(j)}(t+h)$ et en prenant l'espérance,

$$j = 0, p - 1, \quad D_{i,p}(h) + \alpha_{p-1}D_{i,p-1}(h) + \dots + \alpha_0D_{i,0}(h) = 0.$$
 (2)

Posant $\Gamma(h) = (D_{i,k}(h))_{i,k=0,p-1}$ et $\gamma(h) = {}^{t}(D_{i,p}(h), i = 0, p-1), \alpha$ vérifie :

$$\gamma(h) + \Gamma(h)\alpha = 0. \tag{3}$$

Estimer les $(D_{j,k})$ permet d'estimer α . Hyndman [8] estime (3) en h=0 pour une observation continue de X et de ses p-1 dérivées $X^{(i)}$ sur [0,T], c'est à dire pour une observation complète de la diffusion Y sur $[0,T=n\delta]$: l'estimateur obtenu est convergent, asymptotiquement normal et efficace lorsque $T\to +\infty$. Le cadre de notre travail est différent : seule l'observation discrète $(X(l\delta), l=0, n)$ est disponible, où $\delta>0$ est un pas fixé et $T=n\delta\to +\infty$.

Les résultats sur les dérivées de la covariance de X sont rappelés au §2, des estimateurs de ces dérivées étant proposés au §3. Une corrélation existant entre les approximations de $X^{(p-1)}(t)$ et de $dX^{(p-1)}(t)$, un biais explicite multiplicatif c(p) apparait dans l'estimation de $D_{p-1,p}(0)$: il suffit de renormaliser l'estimateur pour débiaiser la procédure. Ceci conduit à une estimation convergente de α , à un biais explicite en $O(\delta)$ près, estimation asymptotiquement normale à la vitesse \sqrt{T} et efficace en variance. L'estimateur de σ^2 est convergent, à un facteur $(1+O(\delta))$ près, asymptotiquement normal à la vitesse $\sqrt{T\delta^{-1}}$. Les propriétés de la méthode sont validés expérimentalement pour un CAR(2) au §4.

2. La covariance d'un CAR(p)

La covariance $r(h) = \mathbb{E}[X(t+h)X(t)]$ de X est de classe $\mathcal{C}^{2p-2}(\mathbb{R})$, $\mathcal{C}^{\infty}(\mathbb{R}^*)$. Pour $k \geqslant 2p-1$, les limites à droite et à gauche de $r^{(k)}$ en 0 existent et sont finies, $r^{(2p-1)}(0^-) = -r^{(2p-1)}(0^+)$, $r^{(2p)}(0^-) = r^{(2p)}(0^+)$ [1,5]. r et ses dérivées sont à décroissance exponentielle.

PROPRIÉTÉ 1 [8, Théorème 3.1]. –

$$\forall h \in \mathbb{R}, \ \forall i, j = 0, p - 1, \qquad D_{i,j}(h) = (-1)^j r^{(i+j)}(h) = (-1)^i r^{(i+j)}(-h),$$

$$\forall h \neq 0, \ \forall i = 0, p - 1, \qquad D_{i,p}(h) = (-1)^p r^{(i+p)}(h) = (-1)^i r^{(i+p)}(-h),$$

$$D_{p-1,p}(0) = (-1)^p r^{(2p-1)}(0^-) = (-1)^{p-1} r^{(2p-1)}(0^+).$$

Les équations de YW s'écrivent alors, pour i = 0, p - 1:

$$\forall h \geqslant 0: \quad r^{(i+p)}(h^+) + \alpha_{p-1}r^{(i+p-1)}(h) + \dots + \alpha_0r^{(i)}(h) = 0, \tag{4}$$

$$\forall h \leq 0: \quad (-1)^p r^{(i+p)}(h^-) + (-1)^{p-1} \alpha_{p-1} r^{(i+p-1)}(h) + \dots + \alpha_0 r^{(i)}(h) = 0. \quad (5)$$

On vérifie alors que, pour un reste R décroissant exponentiellement, on a pour $h \ge 0$:

(i) si $t \in]-\infty, -h] \cup [0, +\infty[$,

$$r(t+h) = \sum_{k=0}^{2p} \frac{h^k}{k!} r^{(k)}(t^+) + h^{2p+1} R(t).$$

(ii) si $t \in]-h, 0[$,

$$r(t+h) = \sum_{k=0}^{2p} \frac{h^k}{k!} r^{(k)}(t) + 2 \frac{(t+h)^{2p-1}}{(2p-1)!} r^{(2p-1)}(0^+) + O(h^{2p+1}).$$

3. Estimation des équations de YW

Les $(D_{i,j})$ sont liées aux dérivées de X, mais ces dérivées ne sont pas observées : il faut les estimer. Soit $\Delta X(t+\delta)=X(t+\delta)-X(t)$, $\Delta^{(j)}$ la $j^{\grave{e}me}$ itérée de Δ . On approxime $X^{(j)}(t)$ par $\delta^{-j}\Delta^{(j)}X(t+j\delta)$: pour $j=1,\,p,\,\delta^{-j}\Delta^{(j)}X(t+j\delta)$ approche $dX^{(j-1)}$ à δ près [9, Ch. 4, théorème 1, p. 139]. Un estimateur empirique de $D_{i,j}(0)$ pour $i,j=0,\,p-1$, est donc :

$$\widehat{D}_{i,j}^{n} = \frac{\delta^{-(i+j)}}{n+1-p} \sum_{k=0}^{n-p} \Delta^{(i)} X(k\delta + i\delta) \Delta^{(j)} X(k\delta + j\delta).$$

Soit $a_j^k = \sum_{l=0}^j C_j^l (-1)^{j-l} l^k$, $j \in \mathbb{N}^*$, $k \in \mathbb{N}$ et $d_{i,j} = 2 \sum_{l=0}^i C_i^l (-1)^l \frac{(j-l)^{2p-1}}{(2p-1)!}$, $i, j \in \mathbb{N}$.

THÉORÈME $1. - Pour \ t \ge 0$, i, j = 0, $p \ et \ k \in \mathbb{Z}$, on a:

$$\mathbb{E}\left[\Delta^{(i)}X(t+i\delta)\Delta^{(j)}X(t+j\delta+k\delta)\right] = (-1)^{i}\Delta^{(i+j)}r(j\delta+k\delta)$$
$$= (-1)^{j}\Delta^{(i+j)}r(i\delta-k\delta). \tag{6}$$

De plus, si $k \le -j$ ou $k \ge i$, on a:

$$\Delta^{(i+j)}r(j\delta+k\delta) = \sum_{l=i+j}^{2p} \frac{\delta^l}{l!} a^l_{i+j} r^{(l)} \left((k\delta - i\delta)^+ \right) + \delta^{2p+1} R(k\delta)$$
 (7)

où R est à décroissance exponentielle. Enfin, si $k \in \{-j+1, \ldots, i-1\}$ alors:

$$\Delta^{(i+j)} r(j\delta + k\delta) = \sum_{l=i+j}^{2p} \frac{\delta^{l}}{l!} a_{i+j}^{l} r^{(l)} ((k-i)\delta) + \delta^{2p-1} d_{i+j,k+j} r^{(2p-1)} (0^{+}) + O(\delta^{2p+1}).$$
 (8)

Démonstration. – Posant $A = \mathbb{E}[\Delta^{(i)}X(t+i\delta)\Delta^{(j)}X(t+j\delta+k\delta)]$, on obtient :

$$A = \sum_{l=0}^{i} C_{i}^{l} (-1)^{i-l} \sum_{n=0}^{j} C_{j}^{n} (-1)^{n} \mathbb{E} \left[X(t+l\delta) X(t+k\delta+j\delta-n\delta) \right]$$

$$= (-1)^{i} \sum_{m=0}^{i+j} (-1)^{m} \left(\sum_{l=\max\{0,m-j\}}^{\min\{m,i\}} C_{i}^{l} C_{j}^{m-l} \right) r(k\delta+j\delta-m\delta)$$

$$= (-1)^{i} \sum_{m=0}^{i+j} (-1)^{m} C_{i+j}^{m} r(k\delta+j\delta-m\delta) = (-1)^{i} \Delta^{(i+j)} r(k\delta+j\delta).$$

(7) et (8) résultent alors des deux développements de r donnés à la fin du §2. \square

Les $(\widehat{D}_{i,j}^n)$ estiment les $(D_{i,j}(0))$ mais $\widehat{D}_{p-1,p}^n$ est biaisé. Soit $c(p) = -1 + d_{2p-1,p}$.

PROPOSITION 1 (Biais des covariances dérivées estimées). –

$$\mathbb{E}[\widehat{D}_{i,j}^{n}] = D_{i,j}(0) + \delta \frac{j-i}{2} D_{i,j+1}(0) + \mathcal{O}(\delta^{2}) \quad si \ i = 0, \ p-1, \ j = 0, \ p,$$

$$i+j \leqslant 2p-3,$$

$$\mathbb{E}[\widehat{D}_{p-2,p}^{n}] = D_{p-1,p-1}(0) - \delta(-1 + d_{2p-2,p}) D_{p-1,p}(0) + \mathcal{O}(\delta^{2}),$$

$$\mathbb{E}[\widehat{D}_{p-1,p-1}^{n}] = D_{p-1,p-1}(0) + \delta d_{2p-2,p-1} D_{p-1,p}(0) + \mathcal{O}(\delta^{2}),$$

$$\mathbb{E}[\widehat{D}_{p-1,p}^{n}] = c(p) D_{p-1,p}(0) - \frac{\delta}{2} \sum_{i=0}^{p-1} \alpha_{j} D_{p-1,j+1}(0) + \mathcal{O}(\delta^{2}). \tag{9}$$

Démonstration. – Utilisant (6) et (8) pour i = p - 1, j = p et k = 0, le développement de Taylor de $r^{(2p-1)}$ et $r^{(2p)}$ en 0^- , puis la propriété 1, on obtient :

$$\begin{split} \mathbb{E}\big[\widehat{D}_{p-1,p}^{n}\big] &= (-1)^{p-1}\delta^{-(2p-1)}\Delta^{(2p-1)}r(p\delta) \\ &= (-1)^{p-1}\left[r^{(2p-1)}(-(p-1)\delta) + d_{2p-1,p}r^{(2p-1)}(0^{+}) \right. \\ &+ \delta\left(\frac{2p-1}{2}\right)r^{(2p)}(-(p-1)\delta)\right] + \mathcal{O}(\delta^{2}) \\ &= (-1)^{p-1}\left[r^{(2p-1)}(0^{-}) - (p-1)\delta r^{(2p)}(0^{-}) + d_{2p-1,p}r^{(2p-1)}(0^{+}) \right. \\ &+ \delta\left(\frac{2p-1}{2}\right)r^{(2p)}(0^{-})\right] + \mathcal{O}(\delta^{2}) \\ &= (-1)^{p-1}(-1 + d_{2p-1,p})r^{(2p-1)}(0^{+}) \\ &+ (-1)^{p-1}\delta\left(\frac{1}{2}\right)r^{(2p)}(0^{+}) + \mathcal{O}(\delta^{2}). \end{split}$$

En dérivant (4) pour i = p - 1 et en passant à la limite en 0^+ , on obtient :

$$r^{(2p)}(0^+) = -\sum_{j=0}^{p-1} \alpha_j r^{(j+p)}(0^+).$$

Avec la propriété 1, on a :

$$(-1)^{p-1} \sum_{j=0}^{p-1} \alpha_j r^{(j+p)}(0^+) = \sum_{j=0}^{p-1} \alpha_j D_{p-1,j+1}(0).$$

Les autres développements s'obtiennent de manière similaire.

 $\widehat{D}_{p-1,p}^n$ présente donc un biais multiplicatif c(p) indépendant de (α,σ^2) : $c(1)=1,\ c(2)=\frac{2}{3},\ c(3)=\frac{11}{20},\ c(4)=\frac{151}{315},\ c(5)=\frac{15619}{36288}.$ Divisant $\widehat{D}_{p-1,p}^n$ par c(p), on obtient un estimateur de $D_{p-1,p}(0)$ à un biais en $O(\delta)$ près. D'autre part, comme $D_{p-1,p}(0)=-\frac{\sigma^2}{2},\ \sigma^2$ est estimé par $\widehat{\sigma}_n^2=-\frac{2}{c(p)}\widehat{D}_{p-1,p}^n$; σ^2 peut aussi être estimé à partir de la variation quadratique $VQ(\Delta^{(p-1)}X)=\sum_{k=0}^{n-p}[\Delta^{(p)}X(k\delta+p\delta)]^2$, (6) et (8) donnant :

$$\mathbb{E}[VQ(\Delta^{(p-1)}X)] = (n-p+1)\delta^{2p-1}c(p)\sigma^2(1+O(\delta)).$$

Quant à $\Gamma(0)$, $\gamma(0)$ et α , ils sont estimés par :

$$\widehat{\Gamma}^{n} = (\widehat{D}_{i,j}^{n})_{i,j=0,p-1},$$

$$\widehat{\gamma}^{n} = {}^{t}(\widehat{D}_{0,p}^{n}, \dots, \widehat{D}_{p-2,p}^{n}, c(p)^{-1} \widehat{D}_{p-1,p}^{n}), \quad \widehat{\Gamma}^{n} \widehat{\alpha} + \widehat{\gamma}^{n} = 0.$$
(10)

Pour δ petit, le biais d'estimation pour α est de l'ordre de δ et s'explicite à partir de

$$B_{i} = \frac{1}{2} \sum_{j=0}^{p-1} \alpha_{j} (j-p) D_{i,j+1}(0), \quad i = 0, p-3,$$

$$D_{i,j+1}(0), \quad i = 0, p-3,$$

$$B_{p-2} = \frac{1}{2} \sum_{j=0}^{p-1} \alpha_j (j-p) D_{p-2,j+1}(0) + \left(-1 + \frac{1}{2} d_{2p-2,p}\right) \sigma^2$$

et

$$B_{p-1} = \frac{1}{2} \sum_{i=0}^{p-1} \alpha_i (i+1-p-c(p)^{-1}) D_{p-1,i+1}(0) - \frac{\alpha_{p-1}}{2} d_{2p-2,p-1} \sigma.$$

Posons $\Gamma^{\delta} = \mathbb{E}[\hat{\Gamma}^n], \, \gamma^{\delta} = \mathbb{E}[\hat{\gamma}^n], \, \sigma_{\delta}^2 = \mathbb{E}[\hat{\sigma}_n^2].$

THÉORÈME 2 (Convergence de l'estimation de Yule-Walker). -

(1) Il existe $\delta_0 > 0$ tel que si $0 < \delta \leqslant \delta_0$, avec une probabilité qui tend vers 1 lorsque $n \to +\infty$, (10) admet une unique solution $\hat{\alpha}^n = -(\widehat{\Gamma}^n)^{-1} \hat{\gamma}^n$, vérifiant :

$$\hat{\alpha}^n \stackrel{\mathbb{P}}{\to} \alpha^{\delta} = -(\Gamma^{\delta})^{-1} \gamma^{\delta} = \alpha - \delta \Gamma(0)^{-1} (B_0, \dots, B_{n-1}) + \mathcal{O}(\delta^2).$$

(2)
$$\hat{\sigma}_n^2 \stackrel{\mathbb{P}}{\to} \sigma_\delta^2 = \sigma^2 + \frac{\delta}{c(p)} \sum_{i=0}^{p-1} \alpha_i D_{p-1,i+1}(0) + \mathcal{O}(\delta^2).$$

Démonstration. – D'après la proposition 1, $\Gamma^{\delta} = \Gamma(0) + O(\delta)$ et $\Gamma(0)$ est inversible [8]. Il existe donc $\delta_0 > 0$ tel que si $0 < \delta \leqslant \delta_0$, Γ^{δ} est inversible. Y étant α exponentiellement mélangeante [6, §2.5.3, proposition 3], on peut appliquer la loi des grands nombres : $\widehat{\Gamma}^n \stackrel{\mathbb{P}}{\to} \Gamma^{\delta}$: avec une probabilité qui tend vers 1, $\widehat{\Gamma}^n$ est inversible et

(10) admet une unique solution $\hat{\alpha}^n$. Appliquant à nouveau la loi des grands nombres à $\hat{\gamma}^n$, on obtient la convergence de $\hat{\alpha}^n$ vers α^δ , l'écart entre α^δ et α s'obtient en remarquant que $\alpha^\delta - \alpha = -(\Gamma^\delta)^{-1}[\gamma^\delta + \Gamma^\delta \alpha]$. Utilisant la proposition 1 ainsi que (2), on en déduit le biais annoncé.

La convergence de $\hat{\sigma}_n^2$ vers σ_δ^2 résulte de la loi des grands nombres pour $\widehat{D}_{p-1,p}^n$; le biais s'évalue à partir de (9). \square

Soit

$$d(p) = \frac{2}{c(p)^2} \sum_{k=1}^{2p-1} \left[\sum_{l=0}^{k} C_{2p}^l (-1)^l \frac{(k-l)^{2p-1}}{(2p-1)!} \right]^2.$$

La convergence gaussienne de l'estimateur et sa variance asymptotique s'obtiennent de façon technique mais standard (cf. [7]) :

THÉORÈME 3 (Normalité et efficacité de l'estimation). –

(1) $Si \ 0 < \delta \leqslant \delta_0$,

$$\begin{split} \sqrt{n\delta}(\hat{\alpha}^n - \alpha^\delta) & \xrightarrow{\mathcal{D}(\mathbb{P})} \mathcal{N}_p(0, V_\theta) \\ où & V_\theta = \sigma^2 \Gamma(0)^{-1} (I + \mathrm{o}(1)). \end{split}$$

(2)

$$\sqrt{n}(\hat{\sigma}_n^2 - \sigma_\delta^2) \stackrel{\mathcal{D}(\mathbb{P})}{\to} \mathcal{N}(0, K_\theta),$$

$$K_\theta = d(p)\sigma^4 + O(\delta).$$

Remarque. – une autre procédure d'estimation [7] utilise les équations de YW (3) décalées de $h=-(p-1)\delta$. Cette procédure élimine directement le biais multiplicatif systématique dans l'estimation de $D_{p-1,p}$. L'estimateur de α déduit a des propriétés analogues au précédent.

4. Etude expérimentale

La méthode d'estimation est mise en œuvre pour un CAR(2) de paramètres $\alpha_0=2$, $\alpha_1=3$ et $\sigma^2=1$, de covariance $r(h)=\frac{1}{6}(\exp(-|h|)-2\exp(-2|h|))$. Les observations sont simulées à partir d'un schéma d'Euler de pas 0.0001 sur $[0,T=n\delta]$ pour différents choix (n,δ) . Nous calculons les moyennes empiriques $m_N(\alpha)=\frac{1}{N}\sum_{i=1}^N\hat{\alpha}^{n,i}$ $(m_N(\sigma^2)$ pour $\sigma^2)$ et les variances empiriques $V_N(\alpha)=\frac{1}{N-1}\sum_{i=1}^N(\hat{\alpha}^{n,i}-m_N)^2$ $(V_N(\sigma^2)$ pour $\sigma^2)$ des estimateurs sur N=200 réalisations indépendantes de X. La variance théorique de $\hat{\alpha}^n$ est $\sigma^2\Gamma(0)^{-1}(I+o(1))$ où $\sigma^2\Gamma(0)^{-1}$ est diagonale, de termes diagonaux 12 et 6. La variance théorique de $\hat{\sigma}^2_n$ vaut $\frac{9}{4}\sigma^4+O(\delta)$. Les biais théoriques de $\hat{\alpha}^n$ et de $\hat{\sigma}^2_n$ sont de la forme $B(\alpha,\sigma^2)\delta+O(\delta^2)$ avec :

$$B^{\alpha}(\alpha) = {}^{t}\left(-\frac{1}{2}\alpha_{0}\alpha_{1}, \frac{5}{4}\left(\alpha_{0} - \frac{1}{3}\alpha_{1}^{2}\right)\right),$$

$$B^{\sigma^{2}}(\alpha, \sigma^{2}) = \frac{3\sigma^{2}}{4}\left(\frac{\alpha_{0}}{\alpha_{1}} - \alpha_{1}\right).$$

Tableau 1 Biais réels et parties principales des biais théoriques pour un CAR(2), $\alpha_0=2$, $\alpha_1=3$ et $\sigma^2=1$

δ	$\alpha^{\delta} - \alpha$	$B^{\alpha}(\alpha)\delta$	$\sigma_{\delta}^2 - \sigma^2$	$B^{\sigma^2}(\alpha,\sigma^2)\delta$
0.05	-0.1407	-0.15	-0.0832	-0.0875
	-0.0629	-0.0625		
0.1	-0.2650	-0.3	-0.1587	-0.175
	-0.1262	-0.125		
0.5	-0.8956	-1.5	-0.5606	-0.875
	-0.5953	-0.625		

Tableau 2 Moyennes empiriques et estimations débiaisées d'un CAR(2) sur 200 répétitions, $\alpha_0=2$, $\alpha_1=3$ et $\sigma^2=1$

n	δ	$m_N(\alpha)$	$lpha^\delta$	$\hat{m}_N(\alpha)$	α	$m_N(\sigma^2)$	σ_δ^2	$\hat{m}_N(\sigma^2)$	σ^2
5000	0.05	1.874	1.859	2.012	2	0.917	0.916	0.996	1
(T = 250)		2.950	2.937	3.015	3				
	0.1	1.744	1.735	1.995	2	0.840	0.841	0.984	1
(T = 500)		2.876	2.873	3.003	3				
	0.5	1.103	1.104	1.767	2	0.439	0.439	0.759	1
(T = 2500)		2.403	2.404	2.917	3				
500	0.05	2.126	1.859	2.288	2	0.903	0.916	0.982	1
(T = 25)		3.026	2.937	3.090	3				
	0.1	1.834	1.735	2.102	2	0.838	0.841	0.981	1
(T = 50)		2.917	2.873	3.046	3				
	0.5	1.116	1.104	1.790	2	0.436	0.439	0.756	1
(T = 250)		2.412	2.404	2.930	3				

On réduit le biais en calculant $\hat{\hat{\alpha}}^n = \hat{\alpha}^n - B^{\alpha}(\hat{\alpha}^n)\delta$ et $\hat{\hat{\sigma}}_n^2 = \hat{\sigma}_n^2 - B^{\sigma^2}(\hat{\alpha}^n, \hat{\sigma}_n^2)\delta$. On note alors $\hat{m}_N(\alpha)$ et $\hat{m}_N(\sigma^2)$ les moyennes empiriques associées.

Le Tableau 1 compare les biais réels $\alpha^{\delta} - \alpha$ et $\sigma_{\delta}^2 - \sigma^2$ à la partie principale des biais théoriques $B(\alpha, \sigma^2)\delta$. Le Tableau 2 donne les estimations de α et de σ^2 comparées à leur limite théorique et aux estimations partiellement débiaisées. Le Tableau 3 compare les variances empiriques aux parties principales des variances théoriques.

Tableau 3 Comparaison des variances empirique et théorique des estimateur d'un CAR(2) sur 200 répétitions, $\alpha_0 = 2$, $\alpha_1 = 3$ et $\sigma^2 = 1$

n	δ	$V_N(\alpha)$	$\sigma^2\Gamma(0)^{-1}$	$V_N(\sigma^2)$	$\frac{9}{4}\sigma^4$
5000 (T = 250)	0.05	$\begin{pmatrix} 10.35 & 0.94 \\ 0.94 & 5.49 \end{pmatrix}$	$\binom{12\ 0}{0\ 6}$	1.62	2.25
(T = 500)	0.1	$\binom{9.64\ 1.42}{1.42\ 4.91}$	$\binom{12\ 0}{0\ 6}$	1.72	2.25
(T = 2500)	0.5	$\binom{4.02\ 1.90}{1.90\ 3.10}$	$\binom{12\ 0}{0\ 6}$	0.44	2.25
500 (T = 25)	0.05	$\begin{pmatrix} 14.29 & 1.03 \\ 1.03 & 6.82 \end{pmatrix}$	$\binom{12\ 0}{0\ 6}$	2.31	2.25
(T = 50)	0.1	$\begin{pmatrix} 11.12 & 1.37 \\ 1.37 & 5.13 \end{pmatrix}$	$\binom{12\ 0}{0\ 6}$	1.56	2.25
(T = 250)	0.5	$\binom{4.06\ 1.77}{1.77\ 13.52}$	$\binom{12\ 0}{0\ 6}$	0.48	2.25

Commentaires. – Les biais réels sont proches de leurs parties principales pour $\delta = 0.05$ et $\delta = 0.1$. On constate la convergence des estimateurs vers leurs limites théoriques. L'estimation des variances reste correcte même pour des valeurs de T relativement faibles, mais se dégrade rapidement lorsque δ croit. Le débiaisage améliore la précision de l'estimation.

RÉFÉRENCES

- [1] M. Arató, Linear Stochastic Systems with Constant Coefficients: A Statistical Approach, in: Lecture Notes in Control and Information Sciences, Vol. 45, Springer, Berlin, 1982.
- [2] M.S. Bartlett, On the theoretical specification and sampling properties of autocorrelated timeseries, JRSS B 8 (1946) 27–41.
- [3] A.R. Bergstrom, Statistical inference in continuous time series, in: Bergstrom (Ed.), Statistical inference in Continuous Time Economic Models, North Holand, Amsterdam, 1976
- [4] P.J. Brockwell, R.J. Hyndman, On continuous-time threshold autoregression, Internat. J. Forecasting 8 (1992) 157–173.
- [5] J.L. Doob, Stochastic Process, Wiley, New York, 1953.
- [6] P. Doukhan, Mixing: Properties and Examples, in: LNS, Vol. 85, Springer-Verlag, 1995.
- [7] X. Guyon, S. Souchet, Estimation de Yule–Walker d'un CAR(*p*) observé à temps discret, Prépublication SAMOS n° 138, 2001, http://samos.univ-paris1.fr/.
- [8] R.J. Hyndman, Yule–Walker estimates for continuous-time autoregressive models, JTSA 14 (3) (1993) 281–296.
- [9] S. Souchet, Estimation des paramètres d'une diffusion ergodique observée à temps discret, Thèse de l'Université Paris 1, 1998, http://samos.univ-paris1.fr/.