@article{AIHPB_2002__38_6_825_0, author = {Bickel, Peter J. and Ritov, Ya'acov and Ryd\'en, Tobias}, title = {Hidden {Markov} model likelihoods and their derivatives behave like i.i.d. ones}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {825--846}, publisher = {Elsevier}, volume = {38}, number = {6}, year = {2002}, mrnumber = {1955339}, zbl = {1011.62087}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_2002__38_6_825_0/} }
TY - JOUR AU - Bickel, Peter J. AU - Ritov, Ya'acov AU - Rydén, Tobias TI - Hidden Markov model likelihoods and their derivatives behave like i.i.d. ones JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2002 SP - 825 EP - 846 VL - 38 IS - 6 PB - Elsevier UR - http://archive.numdam.org/item/AIHPB_2002__38_6_825_0/ LA - en ID - AIHPB_2002__38_6_825_0 ER -
%0 Journal Article %A Bickel, Peter J. %A Ritov, Ya'acov %A Rydén, Tobias %T Hidden Markov model likelihoods and their derivatives behave like i.i.d. ones %J Annales de l'I.H.P. Probabilités et statistiques %D 2002 %P 825-846 %V 38 %N 6 %I Elsevier %U http://archive.numdam.org/item/AIHPB_2002__38_6_825_0/ %G en %F AIHPB_2002__38_6_825_0
Bickel, Peter J.; Ritov, Ya'acov; Rydén, Tobias. Hidden Markov model likelihoods and their derivatives behave like i.i.d. ones. Annales de l'I.H.P. Probabilités et statistiques, Volume 38 (2002) no. 6, pp. 825-846. http://archive.numdam.org/item/AIHPB_2002__38_6_825_0/
[1] Asymptotic Techniques for Use in Statistics, Chapman and Hall, London, 1989. | MR | Zbl
, ,[2] Statistical inference for probabilistic functions of finite state Markov chains, Ann. Math. Statist. 37 (1966) 1554-1563. | MR | Zbl
, ,[3] A simple analysis of third-order efficiency of estimates, in: Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Vol. II, Wadsworth, Belmont, CA, 1985, pp. 749-768. | MR
, , ,[4] A decomposition for the likelihood ratio statistic and the Bartlett correction - A Bayesian argument, Ann. Statist. 18 (1990) 1070-1090. | Zbl
, ,[5] Inference in hidden Markov models I: Local asymptotic normality in the stationary case, Bernoulli 2 (1996) 199-228. | MR | Zbl
, ,[6] Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models, Ann. Statist. 26 (1998) 1614-1635. | MR | Zbl
, , ,[7] P.J. Bickel, Y. Ritov, T. Rydén, Hidden Markov model likelihoods and their derivatives behave like i.i.d. ones: Details, Techical Report, 2002.
[8] R. Douc, E. Moulines, T. Rydén, Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime, Preprint, 2001. | MR
[9] Mixing. Properties and Examples, Lecture Notes in Statistics, 85, Springer-Verlag, New York, 1994. | MR | Zbl
,[10] Maximum likelihood estimation and identification directly from single-channel recordings, Proc. Roy. Soc. London B 249 (1992) 125-132.
, ,[11] Rate of convergence in bootstrap approximations, Ann. Probab. 16 (1988) 1665-1684. | MR | Zbl
,[12] Asymptotic normality of the maximum likelihood estimator in state space models, Ann. Statist. 27 (1999) 514-535. | MR | Zbl
, ,[13] A new approach to linear filtering and prediction problems, in: Linear Least-Squares Estimation, Dowden, Hutchinson & Ross, Stroudsburg, PA, 1977, pp. 254-264.
,[14] Maximum-likelihood estimation for hidden Markov models, Stochatic Process. Appl. 40 (1992) 127-143. | MR | Zbl
,[15] Maximum-penalized-likelihood estimation for independent and Markov-dependent mixture models, Biometrics 48 (1992) 545-558.
, ,[16] Finding the observed information matrix when using the EM algorithm, J. Roy. Statist. Soc. B 44 (1982) 226-233. | MR | Zbl
,[17] Hidden Markov and Other Models for Discrete-valued Time Series, Chapman and Hall, London, 1997. | MR | Zbl
, ,[18] A fast improvement to the EM algorithm on its own terms, J. Roy. Statist. Soc. B 51 (1989) 127-138. | MR | Zbl
,[19] Probabilistic functions of finite state Markov chains, Ann. Math. Statist. 40 (1969) 97-115. | MR | Zbl
,[20] A tutorial on hidden Markov models and selected applications in speech recognition, Proc. IEEE 77 (1989) 257-284.
,[21] Limit Theorems for Large Deviations, Kluwer, Dordrecht, 1991. | MR | Zbl
, ,