@article{AIHPB_2002__38_6_959_0, author = {Hall, Peter and Park, Byeong U. and Turlach, Berwin A.}, title = {Rolling-ball method for estimating the boundary of the support of a point-process intensity}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {959--971}, publisher = {Elsevier}, volume = {38}, number = {6}, year = {2002}, mrnumber = {1955346}, zbl = {1011.62035}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_2002__38_6_959_0/} }
TY - JOUR AU - Hall, Peter AU - Park, Byeong U. AU - Turlach, Berwin A. TI - Rolling-ball method for estimating the boundary of the support of a point-process intensity JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2002 SP - 959 EP - 971 VL - 38 IS - 6 PB - Elsevier UR - http://archive.numdam.org/item/AIHPB_2002__38_6_959_0/ LA - en ID - AIHPB_2002__38_6_959_0 ER -
%0 Journal Article %A Hall, Peter %A Park, Byeong U. %A Turlach, Berwin A. %T Rolling-ball method for estimating the boundary of the support of a point-process intensity %J Annales de l'I.H.P. Probabilités et statistiques %D 2002 %P 959-971 %V 38 %N 6 %I Elsevier %U http://archive.numdam.org/item/AIHPB_2002__38_6_959_0/ %G en %F AIHPB_2002__38_6_959_0
Hall, Peter; Park, Byeong U.; Turlach, Berwin A. Rolling-ball method for estimating the boundary of the support of a point-process intensity. Annales de l'I.H.P. Probabilités et statistiques, Volume 38 (2002) no. 6, pp. 959-971. http://archive.numdam.org/item/AIHPB_2002__38_6_959_0/
[1] Limit theorems for functionals of convex hulls, Probab. Theory Related Fields 100 (1994) 31-55. | MR | Zbl
, ,[2] Data Envelope Analysis: Theory, Methodology and Applications, Kluwer, Boston, 1995. | Zbl
, , , ,[3] Economics of scale in US electric power generation, J. Polit. Economy 84 (1976) 653-667.
, ,[4] The convex hull of a random set of points, Biometrika 52 (1965) 331-343. | MR | Zbl
,[5] On estimation of monotone and concave frontier functions, J. Amer. Statist. Assoc. 94 (1999) 220-228. | MR | Zbl
, , , ,[6] Limit theorems for convex hulls, Probab. Theory Related Fields 79 (1988) 327-368. | MR | Zbl
,[7] Statistical inference and nonparametric efficiency: a selective survey, J. Productivity Anal. 7 (1996) 161-176.
,[8] On polynomial estimators of frontiers and boundaries, J. Multivariate Anal. 66 (1998) 71-98. | MR | Zbl
, , ,[9] Estimation of non-sharp support boundaries, J. Multivariate Anal. 55 (1995) 205-218. | MR | Zbl
, , ,[10] A note on the convergence of nonparametric DEA estimators for production efficiency scores, Econometric Theory 14 (1998) 783-793. | MR
, , ,[11] Minimax Theory of Image Reconstruction, Lecture Notes in Statistics, 82, Springer-Verlag, Berlin, 1993. | MR | Zbl
, ,[12] Efficient estimation of monotone boundaries, Ann. Statist. 23 (1995) 476-489. | MR | Zbl
, , ,[13] On estimation of monotone and convex boundaries, Pub. Inst. Statist. Univ. Paris 49 (1995) 3-18. | MR | Zbl
, , ,[14] Asymptotical minimax recovery of sets with smooth boundaries, Ann. Statist. 23 (1995) 502-524. | MR | Zbl
, ,[15] Two dimensional interpolation from random data, Comput. J. 19 (1976) 178-181. | MR | Zbl
,[16] Lectures on Random Voronoi Tessellations, Lecture Notes in Statistics, 87, Springer-Verlag, New York, 1994. | MR | Zbl
,[17] Some properties of convex hulls generated by homogeneous Poisson point processes in an unbounded convex domain, Ann. Inst. Statist. Math. 47 (1995) 21-29. | MR | Zbl
,[18] Spatial Statistics, Wiley, New York, 1981. | MR | Zbl
,[19] Computational Geometry in C, Cambridge University Press, Cambridge, 1994. | Zbl
,[20] On the convex hull of n randomly chosen points, Z. Wahrscheinlichkeitstheorie Verw. Geb. 2 (1963) 75-84. | Zbl
, ,[21] On the convex hull of n randomly chosen points II, Z. Wahrscheinlichkeitstheorie Verw. Geb. 3 (1964) 138-147. | MR | Zbl
, ,[22] Data envelopment analysis: the evolution of the state-of-the-art, 1978-1995, J. Productivity Anal. 7 (1996) 99-137.
,[23] R. Turner, D. Macqueen, S function Deldir to compute the Dirichlet (Voronoi) tesselation and Delaunay triangulation of a planar set of data points, Available from Statlib, 1996.