@article{AIHPB_2002__38_6_991_0, author = {Massart, Pascal}, title = {Tusnady's lemma, 24 years later}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {991--1007}, publisher = {Elsevier}, volume = {38}, number = {6}, year = {2002}, mrnumber = {1955348}, zbl = {1016.60037}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_2002__38_6_991_0/} }
Massart, Pascal. Tusnady's lemma, 24 years later. Annales de l'I.H.P. Probabilités et statistiques, Tome 38 (2002) no. 6, pp. 991-1007. http://archive.numdam.org/item/AIHPB_2002__38_6_991_0/
[1] Hungarian constructions from the nonasymptotic view point, Ann. Probab. 17 (1) (1989) 239-256. | MR | Zbl
, ,[2] Strong Approximations in Probability and Statistics, Academic Press, New York, 1981. | MR | Zbl
, ,[3] A. Carter, D. Pollard, Tusnády's inequality revisited, Preprint, 2000.
[4] Diffusion Processes and Their Sample Paths, Springer, Berlin, 1965.
, ,[5] An approximation of partial sums of independent rv-s, and the sample df. I, Z. Warscheinlichkeitstheorie Verwandte Geb. 32 (1975) 111-131. | MR | Zbl
, , ,[6] A refinement of the KMT inequality for the uniform empirical process, Ann. Probab. 15 (1987) 871-884. | MR | Zbl
, ,[7] Asymptotic equivalence of density estimation and Gaussian white noise, Ann. Statist. 24 (1996) 2399-2430. | MR | Zbl
,[8] Empirical Processes with Applications to Statistics, Wiley, New York, 1986. | MR | Zbl
, ,[9] G. Tusnády, A study of statistical hypotheses, PhD Thesis, Hungarian Academy of Sciences, Budapest, 1977 (In Hungarian).