@article{AIHPB_2003__39_1_1_0, author = {Catoni, Olivier}, title = {Laplace transform estimates and deviation inequalities}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1--26}, publisher = {Elsevier}, volume = {39}, number = {1}, year = {2003}, mrnumber = {1959840}, zbl = {1012.60023}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_2003__39_1_1_0/} }
Catoni, Olivier. Laplace transform estimates and deviation inequalities. Annales de l'I.H.P. Probabilités et statistiques, Tome 39 (2003) no. 1, pp. 1-26. http://archive.numdam.org/item/AIHPB_2003__39_1_1_0/
[1] Weighted sums of certain dependent random variables, Tôhoku Math. J. (2) 19 (1967) 357-367. | MR | Zbl
,[2] S. Boucheron, G. Lugosi, P. Massart, A sharp concentration inequality with applications, Prépublication d'Orsay numéro 25 (27/9/1999), http://www.math.u-psud.fr/~biblio/html/ppo.html. | MR
[3] O. Catoni, “Universal” aggregation rules with exact bias bounds, preprint PMA-510, http://www.proba.jussieu.fr/mathdoc/preprints/index.html#1999.
[4] O. Catoni, Gibbs estimators, preprint LMENS-98-21, 1998, http://www.dmi.ens.fr/preprints/.
[5] Transportation approach to some concentration inequalities in product spaces, Electron. Comm. Probab. 1 (9) (1996) 83-90, (electronic). | MR | Zbl
, ,[6] Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963) 13-30. | MR | Zbl
,[7] Concentration of measure and logarithmic Sobolev inequalities, Notes Berlin, 1997. | Numdam | Zbl
,[8] On Talagrand's deviation inequalities for product measures, ESAIM Probab. Statist. 1 (1995) 63-87. | Numdam | MR | Zbl
,[9] Isoperimetry and Gaussian analysis, in: Lectures on Probability Theory and Statistics (Saint-Flour, 1994), Lecture Notes in Math., 1648, Springer, Berlin, 1996, pp. 165-294. | MR | Zbl
,[10] Probability in Banach Spaces, Springer, Berlin, 1991. | MR | Zbl
, ,[11] Measure concentration for a class of random processes, Probab. Theory Related Fields 110 (3) (1998) 427-439. | MR | Zbl
,[12] A measure concentration inequality for contracting Markov chains, Geom. Funct. Anal. 6 (3) (1996) 556-571. | EuDML | MR | Zbl
,[13] Bounding -distance by informational divergence: a method to prove measure concentration, Ann. Probab. 24 (2) (1996) 857-866. | MR | Zbl
,[14] P. Massart, About the constants in Talagrand's concentration inequalities for empirical processes, Ann. Probab., 1999, to appear. | MR | Zbl
[15] P. Massart, Optimal constants for Hoeffding type inequalities, Prépublication d'Orsay numéro 86 (18/12/1998), http://www.math.u-psud.fr/~biblio/html/ppo.html.
[16] Concentration, in: , , (Eds.), Probabilistic Methods for Algorithmic Discrete Mathematics, Springer, 1998. | MR | Zbl
,[17] Probability Measures on Metric Spaces, Academic Press, New York, 1967. | MR | Zbl
,[18] P.-M. Samson, Concentration of measure inequalities for Markov chains and Φ-mixing processes, Ann. Probab., 1998, to appear. | Zbl
[19] P.-M. Samson, Inégalités de concentration de la mesure pour des chaînes de Markov et des processus Φ-mélangeants, PhD, Université Paul Sabatier, Toulouse, France, June 1998.
[20] Concentration of measure and isoperimetric inequalities in product spaces, Publ. Math. IHES 81 (1995) 73-205. | EuDML | Numdam | MR | Zbl
,[21] Exponential estimates for large deviations, Teor. Verojatnost. i Primenen. 19 (1974) 152-154, (Russian). | MR | Zbl
,