Finite volume approximation of the effective diffusion matrix : the case of independent bond disorder
Annales de l'I.H.P. Probabilités et statistiques, Volume 39 (2003) no. 3, p. 505-525
@article{AIHPB_2003__39_3_505_0,
     author = {Caputo, Pietro and Ioffe, Dmitry},
     title = {Finite volume approximation of the effective diffusion matrix : the case of independent bond disorder},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Elsevier},
     volume = {39},
     number = {3},
     year = {2003},
     pages = {505-525},
     doi = {10.1016/S0246-0203(02)00016-X},
     zbl = {1014.60094},
     mrnumber = {1978989},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2003__39_3_505_0}
}
Caputo, Pietro; Ioffe, Dmitry. Finite volume approximation of the effective diffusion matrix : the case of independent bond disorder. Annales de l'I.H.P. Probabilités et statistiques, Volume 39 (2003) no. 3, pp. 505-525. doi : 10.1016/S0246-0203(02)00016-X. http://www.numdam.org/item/AIHPB_2003__39_3_505_0/

[1] D Boivin, Weak convergence for reversible random walks in a random environment, Ann. Probab. 21 (1993) 1427-1440. | MR 1235423 | Zbl 0783.60067

[2] D Bovin, Y Derriennic, The ergodic theorem for additive cocycles of Zd or Rd, Ergodic Theory Dynam. Systems 11 (1991) 19-39. | MR 1101082 | Zbl 0723.60008

[3] A De Masi, P Ferrari, S Goldstein, W.D Wick, An invariance principle for reversible Markov processes. Applications to random motions in random environments, J. Statist. Phys. 55 (1989) 787-855. | MR 1003538 | Zbl 0713.60041

[4] J.-D Deuschel, G Giacomin, D Ioffe, Large deviations and concentration properties for ∇φ interface models, Probab. Theory Related Fields 117 (2000) 49-111. | Zbl 0988.82018

[5] T Funaki, H Spohn, Motion by mean curvature from the Ginzburg-Landau ∇φ interface model, Comm. Math. Phys. 185 (1997) 1-36. | Zbl 0884.58098

[6] H.O Georgii, Gibbs Measures and Phase Transitions, de Gruyter Studies in Math., 9, 1988. | MR 956646 | Zbl 0657.60122

[7] G. Giacomin, S. Olla, H. Spohn, Equilibrium fluctuation for a Ginzburg-Landau interface model, Ann. Probab., to appear.

[8] D Gilbarg, N.S Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1983. | MR 737190 | Zbl 0562.35001

[9] V.V Jikov, S.M Kozlov, O.A Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, 1994. | MR 1329546 | Zbl 0838.35001

[10] C Kipnis, S.R.S Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Comm. Math. Phys. 104 (1986) 1-19. | MR 834478 | Zbl 0588.60058

[11] S.M Kozlov, The method of averaging and walks in inhomogeneous environments, Russian Math. Surveys 40 (2) (1985) 73-145. | MR 786087 | Zbl 0615.60063

[12] C. Landim, S. Olla, S.R.S. Varadhan, Finite-dimensional approximation of the self-diffusion coefficient for the exclusion process, Ann. Probab., to appear. | MR 1905849 | Zbl 1018.60097

[13] G.F Lawler, Intersection of Random Walks, Probability and its Applications, Birkhäuser Boston, 1991. | MR 1117680 | Zbl 0925.60078

[14] R Künnemann, The diffusion limit for reversible jump processes on Zd with ergodic random bond conductivities, Comm. Math. Phys. 90 (1983) 27-68. | MR 714611 | Zbl 0523.60097

[15] N.C Meyers, An Lp estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Sc. Norm. Sup. Pisa 17 (1963) 189-206. | Numdam | MR 159110 | Zbl 0127.31904

[16] S Olla, Lectures on Homogenization of Diffusion Processes in Random Fields, Ecole Polytechnique, 1994.

[17] H. Owhadi, Approximation of the effective conductivity of ergodic media by periodization, Preprint, 2002. | MR 1961343

[18] G Papanicolaou, S.R.S Varadhan, Diffusions with random coefficients, in: Statistics and Probability: Essays in Honor of C.R. Rao, North-Holland, Amsterdam, 1982, pp. 547-552. | MR 659505 | Zbl 0486.60076

[19] M Talagrand, A new look at independence, Ann. Probab. 24 (1996) 1-34. | MR 1387624 | Zbl 0858.60019