Cut times for random walks on the discrete Heisenberg group
Annales de l'I.H.P. Probabilités et statistiques, Tome 39 (2003) no. 4, pp. 621-638.
@article{AIHPB_2003__39_4_621_0,
     author = {Blach\`ere, S\'ebastien},
     title = {Cut times for random walks on the discrete Heisenberg group},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {621--638},
     publisher = {Elsevier},
     volume = {39},
     number = {4},
     year = {2003},
     doi = {10.1016/S0246-0203(03)00017-7},
     zbl = {1022.60004},
     mrnumber = {1983173},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPB_2003__39_4_621_0/}
}
Blachère, Sébastien. Cut times for random walks on the discrete Heisenberg group. Annales de l'I.H.P. Probabilités et statistiques, Tome 39 (2003) no. 4, pp. 621-638. doi : 10.1016/S0246-0203(03)00017-7. http://archive.numdam.org/item/AIHPB_2003__39_4_621_0/

[1] G. Alexopoulos, Random walks on discrete groups of polynomial volume growth, Preprint. | MR 1905856

[2] H. Bass, The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc. (3) 25 (1972) 603-614. | MR 379672 | Zbl 0259.20045

[3] S. Blachère, Thèse de doctorat, Université Paul Sabatier, 2000.

[4] J. Dixmier, Sur les représentations unitaries des groupes de Lie nilpotents. III, Canad. J. Math. 10 (1958) 321-348. | MR 95427 | Zbl 0100.32401

[5] G. Folland, A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc. 79 (1973) 373-376. | MR 315267 | Zbl 0256.35020

[6] B. Gaveau, Principe de moindre action, propagation de la chaleur, et estimées sous-elliptiques sur certains groupes nilpotents, Acta Math. 139 (1977) 96-153. | MR 461589 | Zbl 0366.22010

[7] M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. IHES 53 (1981) 53-73. | Numdam | MR 623534 | Zbl 0474.20018

[8] P. Hall, Nilpotent Groups, Queen Mary College Math. Notes, 1969. | MR 283083 | Zbl 0211.34201

[9] W. Hebisch, L. Saloff-Coste, Gaussian estimates for Markov chains and random walks on groups, Ann. Probab. 21 (1993) 673-709. | MR 1217561 | Zbl 0776.60086

[10] N. James, Ph.D. Dissertation, University of California, Berkeley, 1996.

[11] N. James, Y. Peres, Cutpoints and exchangeable events for random walks, Teor. Veroyatnost. i Primenen. 41 (4) (1996) 854-868, translation in , Theory Probab. Appl. 41 (1997) 666-677. | MR 1687097 | Zbl 0896.60035

[12] S. Kochen, C. Stone, A note on the Borel-Cantelli lemma, Illinois J. Math. 8 (1964) 248-251. | Zbl 0139.35401

[13] G. Lawler, Intersections of Random Walks, Birkhäuser, 1991. | MR 1117680 | Zbl 0925.60078

[14] A. Malcev, On a class of homogeneous spaces, Amer. Math. Soc. Transl. 1951 (39) (1951) 276-307. | MR 39734 | Zbl 0034.01701

[15] N. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and Geometry on Groups, Cambridge University Press, Cambridge, 1992. | MR 1218884 | Zbl 0813.22003