The Pascal adic transformation is loosely Bernoulli
Annales de l'I.H.P. Probabilités et statistiques, Volume 40 (2004) no. 2, p. 133-139
@article{AIHPB_2004__40_2_133_0,
     author = {Janvresse, \'Elise and La Rue, Thierry de},
     title = {The Pascal adic transformation is loosely Bernoulli},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Elsevier},
     volume = {40},
     number = {2},
     year = {2004},
     pages = {133-139},
     doi = {10.1016/j.anihpb.2003.09.001},
     zbl = {1044.28012},
     mrnumber = {2044811},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2004__40_2_133_0}
}
Janvresse, Élise; de La Rue, Thierry. The Pascal adic transformation is loosely Bernoulli. Annales de l'I.H.P. Probabilités et statistiques, Volume 40 (2004) no. 2, pp. 133-139. doi : 10.1016/j.anihpb.2003.09.001. http://www.numdam.org/item/AIHPB_2004__40_2_133_0/

[1] J. Feldman, New K-automorphisms and a problem of Kakutani, Israel J. Math. 24 (1976) 16-38. | MR 409763 | Zbl 0336.28003

[2] X. Méla, Dynamical properties of the Pascal adic and related systems, PhD Thesis, Chapel Hill, 2002.

[3] D.S. Ornstein, D.J. Rudolph, B. Weiss, Equivalence of Measure Preserving Transformations, Memoirs of the American Mathematical Society, vol. 262, 1982. | MR 653094 | Zbl 0504.28019

[4] A.M. Vershik, A theorem on the Markov approximation in ergodic theory, J. Soviet Math. 28 (1985) 667-674. | Zbl 0559.47006

[5] A.M. Vershik, A.N. Livshits, Adic models of ergodic transformations, spectral theory, substitutions, and related topics, in: Representation Theory and Dynamical Systems, Adv. Soviet Math., vol. 9, Amer. Math. Society, Providence, RI, 1992, pp. 185-204. | MR 1166202 | Zbl 0770.28013