Poisson trees, succession lines and coalescing random walks
Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 2, p. 141-152
@article{AIHPB_2004__40_2_141_0,
     author = {Ferrari, Pablo A. and Landim, Claudio and Thorisson, H.},
     title = {Poisson trees, succession lines and coalescing random walks},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Elsevier},
     volume = {40},
     number = {2},
     year = {2004},
     pages = {141-152},
     doi = {10.1016/j.anihpb.2003.12.001},
     zbl = {1042.60064},
     mrnumber = {2044812},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2004__40_2_141_0}
}
Ferrari, P. A.; Landim, C.; Thorisson, H. Poisson trees, succession lines and coalescing random walks. Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 2, pp. 141-152. doi : 10.1016/j.anihpb.2003.12.001. http://www.numdam.org/item/AIHPB_2004__40_2_141_0/

[1] K.S. Alexander, Percolation and minimal spanning forests in infinite graphs, Ann. Probab. 23 (1) (1995) 87-104. | MR 1330762 | Zbl 0827.60079

[2] R. Arratia, Coalescing Brownian motions and the voter model on Z, Unpublished manuscript, 1981, available from rarratia@math.usc.edu.

[3] R. Arratia, Coalescing Brownian motions on the line, Phd Thesis. Univ. of Madison, Wisconsin, 1981.

[4] R.M. Burton, M.S. Keane, Density and uniqueness in percolation, Comm. Math. Phys. 121 (1989) 501-505. | MR 990777 | Zbl 0662.60113

[5] P.A. Ferrari, L.R.G. Fontes, X.-Y. Wu, Poisson trees converge to Brownian web, http://arxiv.org/abs/math.PR/0304247.

[6] L.R.G. Fontes, M. Isopi, C.M. Newman, K. Ravishankar, The Brownian web: characterization and convergence, http://arxiv.org/abs/math.PR/0304119. | MR 2094432

[7] S. Gangopadhyay, R. Roy, A. Sarkar, Random oriented trees: a model of drainage networks, Preprint Indian Statistical Institute isid/ms/2002/05 , http://www.isid.ac.in/statmath/eprints/2002/isid200205.pdf. | MR 2071422

[8] O. Häggström, R. Meester, Nearest neighbor and hard sphere models in continuum percolation, Random Structures Algorithms 9 (3) (1996) 295-315. | MR 1606845 | Zbl 0866.60088

[9] A.E. Holroyd, Y. Peres, Trees and matchings from point processes, http://arxiv.org/abs/math.PR/0211455. | MR 1961286

[10] C.M. Newman, D.L. Stein, Multiple states and thermodynamic limits in short-ranged Ising spin-glass models, Phys. Rev. B 46 (1992) 973-982.

[11] C.M. Newman, D.L. Stein, Spin-glass model with dimension-dependent ground state multiplicity, Phys. Rev. Lett. 72 (1994) 2286-2289.

[12] I. Rodriguez-Iturbe, A. Rinaldo, Fractal River Networks: Chance and Self-Organization, Cambridge University Press, New York, 1997.

[13] H. Thorisson, Point-stationarity in d dimensions and Palm theory, Bernoulli 5 (5) (1999) 797-831. | MR 1715440 | Zbl 0953.60029

[14] H. Thorisson, Coupling, Stationarity, and Regeneration. Probability and its Applications, Springer-Verlag, New York, 2000. | MR 1741181 | Zbl 0949.60007

[15] B. Tóth, W. Werner, The true self-repelling motion, Probab. Theory Related Fields 111 (3) (1998) 375-452. | MR 1640799 | Zbl 0912.60056