Aggregated estimators and empirical complexity for least square regression
Annales de l'I.H.P. Probabilités et statistiques, Volume 40 (2004) no. 6, pp. 685-736.
@article{AIHPB_2004__40_6_685_0,
     author = {Audibert, Jean-Yves},
     title = {Aggregated estimators and empirical complexity for least square regression},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {685--736},
     publisher = {Elsevier},
     volume = {40},
     number = {6},
     year = {2004},
     doi = {10.1016/j.anihpb.2003.11.006},
     mrnumber = {2096215},
     zbl = {1052.62037},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2003.11.006/}
}
TY  - JOUR
AU  - Audibert, Jean-Yves
TI  - Aggregated estimators and empirical complexity for least square regression
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2004
SP  - 685
EP  - 736
VL  - 40
IS  - 6
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpb.2003.11.006/
DO  - 10.1016/j.anihpb.2003.11.006
LA  - en
ID  - AIHPB_2004__40_6_685_0
ER  - 
%0 Journal Article
%A Audibert, Jean-Yves
%T Aggregated estimators and empirical complexity for least square regression
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2004
%P 685-736
%V 40
%N 6
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpb.2003.11.006/
%R 10.1016/j.anihpb.2003.11.006
%G en
%F AIHPB_2004__40_6_685_0
Audibert, Jean-Yves. Aggregated estimators and empirical complexity for least square regression. Annales de l'I.H.P. Probabilités et statistiques, Volume 40 (2004) no. 6, pp. 685-736. doi : 10.1016/j.anihpb.2003.11.006. http://archive.numdam.org/articles/10.1016/j.anihpb.2003.11.006/

[1] L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996) 123-140. | Zbl

[2] L. Breiman, Arcing classifiers, Ann. Statist 26 (3) (1998) 801-849. | MR | Zbl

[3] O. Catoni, Statistical Learning Theory and Stochastic Optimization, in: Probability Summer School, Saint Flour, 2001, Springer-Verlag, submitted for publication. | MR | Zbl

[4] Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in: Machine Learning: Proceedings of the Thirteenth International Conference, 1996, pp. 148-156.

[5] J. Friedman, T. Hastie, R. Tibshirani, Additive logistic regression: a statistical view of boosting, Technical Report, Dept. of Statistics, Stanford University, 1998.

[6] A. Juditsky, A. Nemirovski, Functional aggregation for nonparametric estimation, Ann. Statist 28 (2000) 681-712. | MR | Zbl

[7] E. Mammen, A.B. Tsybakov, Smooth discrimination analysis, Ann. Statist 27 (1999) 1808-1829. | MR | Zbl

[8] D.A. Mcallester, PAC-bayesian stochastic model selection, Machine Learning J (2001), submitted for publication. | Zbl

[9] A. Nemirovski, Lectures on Probability Theory and Statistics. Part II: Topics in Non-Parametric Statistics, in: Probability Summer School, Saint Flour, Springer-Verlag, Berlin, 1998. | MR | Zbl

[10] G. Rätsch, M. Warmuth, S. Mika, T. Onoda, S. Lemm, K.-R. Müller, Barrier boosting, in: Proc. COLT'00, Morgan Kaufmann, Palo Alto, 2000, pp. 170-179.

[11] R.E. Schapire, Y. Singer, Improved boosting algorithms using confidence-rated predictions, 1998, pp. 80-91.

[12] A.B. Tsybakov, Optimal aggregation of classifiers in statistical learning, 2001.

[13] Y. Yang, Aggregating regression procedures for a better performance, 2001.

Cited by Sources: