Stochastic integration with respect to Volterra processes
Annales de l'I.H.P. Probabilités et statistiques, Volume 41 (2005) no. 2, p. 123-149
@article{AIHPB_2005__41_2_123_0,
     author = {Decreusefond, L.},
     title = {Stochastic integration with respect to Volterra processes},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Elsevier},
     volume = {41},
     number = {2},
     year = {2005},
     pages = {123-149},
     doi = {10.1016/j.anihpb.2004.03.004},
     zbl = {1071.60040},
     mrnumber = {2124078},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2005__41_2_123_0}
}
Decreusefond, L. Stochastic integration with respect to Volterra processes. Annales de l'I.H.P. Probabilités et statistiques, Volume 41 (2005) no. 2, pp. 123-149. doi : 10.1016/j.anihpb.2004.03.004. http://www.numdam.org/item/AIHPB_2005__41_2_123_0/

[1] R. Adams, Sobolev Spaces, Academic Press, 1975. | MR 450957 | Zbl 0314.46030

[2] E. Alòs, J.O. León, D. Nualart, Stochastic Stratonovitch calculus for fractional Brownian motion with Hurst parameter less than 1/2, Taiwanese J. Math. 5 (3) (2001) 609-632. | MR 1849782 | Zbl 0989.60054

[3] E. Alòs, O. Mazet, D. Nualart, Stochastic calculus with respect to Gaussian processes, Ann. Probab. 29 (2) (2001) 766-801. | MR 1849177 | Zbl 1015.60047

[4] A. Benassi, P. Bertrand, S. Cohen, J. Istas, Identification d'un processus gaussien multifractionnaire avec des ruptures sur la fonction d'échelle, C. R. Acad. Sci. Paris Sér. I Math. 329 (5) (1999) 435-440. | MR 1710087 | Zbl 0947.62054

[5] P. Carmona, L. Coutin, G. Montseny, Stochastic integration with respect to fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist. 39 (1) (2003) 27-68. | Numdam | MR 1959841 | Zbl 1016.60043

[6] L. Coutin, Z. Qian, Stochastic differential equations for fractional Brownian motions, C. R. Acad. Sci. Paris Sér. I Math. 331 (1) (2000) 75-80. | MR 1780221 | Zbl 0981.60040

[7] W. Dai, C.C. Heyde, Itô's formula with respect to fractional Brownian motion and its application, J. Appl. Math. Stochastic Anal. 9 (4) (1996) 439-448. | MR 1429266 | Zbl 0867.60029

[8] L. Decreusefond, Stochastic calculus for Volterra processes, C. R. Acad. Sci. Paris Sér. I Math. 334 (10) (2002) 903-908. | Zbl 1074.60066

[9] L. Decreusefond, A. Üstünel, Application du calcul des variations stochastiques au mouvement brownien fractionnaire, C. R. Acad. Sci. Paris Sér. I Math. 321 (12) (1995) 1605-1608. | MR 1367815 | Zbl 0846.60057

[10] L. Decreusefond, A. Üstünel, Stochastic analysis of the fractional Brownian motion, Potential Anal. 10 (2) (1999) 177-214. | MR 1677455 | Zbl 0924.60034

[11] Doukhan P., Oppenheim G., Taqqu M. (Eds.), Long Range Dependence: Theory and Applications, Birkhäuser, 2002, pp. 203-226, Chapter 10.

[12] M. Errami, F. Russo, Covariation de convolution de martingales, C. R. Acad. Sci. Paris Sér. I Math. 326 (5) (1998) 601-606. | MR 1649341 | Zbl 0917.60054

[13] M. Errami, F. Russo, n-covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation processes, Stochastic Process. Appl. 104 (2) (2003) 259-299. | MR 1961622 | Zbl 1075.60531

[14] D. Feyel, A. De La Pradelle, Capacités gaussiennes, Ann. Inst. Fourier 41 (1) (1991) 49-76. | Numdam | MR 1112191 | Zbl 0735.46018

[15] D. Feyel, A. De La Pradelle, On fractional Brownian processes, Potential Anal. 10 (3) (1999) 273-288. | MR 1696137 | Zbl 0944.60045

[16] D. Feyel, A. De La Pradelle, The FBM Ito's formula through analytic continuation, Electron. J. Probab. 6 (26) (2001) 22, (electronic). | MR 1873303 | Zbl 1008.60074

[17] M. Gradinaru, F. Russo, P. Vallois, Generalized covariations, local time and Stratonovich Itô’s formula for fractional Brownian motion with Hurst index H1/4, Ann. Probab. 31 (4) (2003) 1772-1820. | Zbl 1059.60067

[18] T.J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (2) (1998) 215-310. | MR 1654527 | Zbl 0923.34056

[19] A. Nikiforov, V. Uvarov, Special Functions of Mathematical Physics, Birkhäuser, 1988. | MR 922041 | Zbl 0624.33001

[20] D. Nualart, The Malliavin Calculus and Related Topics, Springer-Verlag, 1995. | MR 1344217 | Zbl 0837.60050

[21] S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science, 1993. | MR 1347689 | Zbl 0818.26003

[22] J. Tambaca, Estimates of the Sobolev norm of a product of two functions, J. Math. Anal. Appl. 255 (1) (2001) 137-146. | MR 1813814 | Zbl 0979.46020

[23] A.S. Üstünel, The Itô formula for anticipative processes with nonmonotonous time scale via the Malliavin calculus, Probab. Theory Related Fields 79 (1988) 249-269. | MR 958290 | Zbl 0635.60059

[24] A.S. Üstünel, An Introduction to Analysis on Wiener Space, Lectures Notes in Mathematics, vol. 1610, Springer-Verlag, 1995. | MR 1439752 | Zbl 0837.60051

[25] A.S. Üstünel, M. Zakai, Transformations of Measure on Wiener Spaces, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. | MR 1736980

[26] M. Zähle, Integration with respect to fractal functions and stochastic calculus, I, Probab. Theory Related Fields 111 (3) (1998) 333-374. | MR 1640795 | Zbl 0918.60037