Thick points for the Cauchy process
Annales de l'I.H.P. Probabilités et statistiques, Tome 41 (2005) no. 5, pp. 953-970.
@article{AIHPB_2005__41_5_953_0,
     author = {Daviaud, Olivier},
     title = {Thick points for the {Cauchy} process},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {953--970},
     publisher = {Elsevier},
     volume = {41},
     number = {5},
     year = {2005},
     doi = {10.1016/j.anihpb.2004.10.001},
     mrnumber = {2165259},
     zbl = {1074.60084},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2004.10.001/}
}
TY  - JOUR
AU  - Daviaud, Olivier
TI  - Thick points for the Cauchy process
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2005
SP  - 953
EP  - 970
VL  - 41
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpb.2004.10.001/
DO  - 10.1016/j.anihpb.2004.10.001
LA  - en
ID  - AIHPB_2005__41_5_953_0
ER  - 
%0 Journal Article
%A Daviaud, Olivier
%T Thick points for the Cauchy process
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2005
%P 953-970
%V 41
%N 5
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpb.2004.10.001/
%R 10.1016/j.anihpb.2004.10.001
%G en
%F AIHPB_2005__41_5_953_0
Daviaud, Olivier. Thick points for the Cauchy process. Annales de l'I.H.P. Probabilités et statistiques, Tome 41 (2005) no. 5, pp. 953-970. doi : 10.1016/j.anihpb.2004.10.001. http://archive.numdam.org/articles/10.1016/j.anihpb.2004.10.001/

[1] L. Ahlfors, Complex Analysis, McGraw-Hill, 1979. | MR | Zbl

[2] J. Bertoin, Levy Processes, Cambridge University Press, New York, 1996. | MR | Zbl

[3] E.S. Boylan, Local time for a class of Markov processes, Illinois J. Math. 8 (1964) 19-39. | MR | Zbl

[4] A. Dembo, Y. Peres, J. Rosen, O. Zeitouni, Thick points for transient symmetric stable processes, Electronic J. Probab. 4 (10) (1999) 1-13. | MR | Zbl

[5] A. Dembo, Y. Peres, J. Rosen, O. Zeitouni, Thick points for spatial Brownian motion: Multifractal analysis of occupation measure, Ann. Probab. 28 (2000) 1-35. | MR | Zbl

[6] A. Dembo, Y. Peres, J. Rosen, O. Zeitouni, Thick points for planar Brownian motion and the Erdős-Taylor conjecture on random walk, Acta Math. 186 (2001) 239-270. | MR | Zbl

[7] A. Dembo, Y. Peres, J. Rosen, O. Zeitouni, Thick points for intersections of planar Brownian paths, Trans. Amer. Math. Soc. 354 (2002) 4969-5003. | MR | Zbl

[8] D. Gilbard, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. | MR | Zbl

[9] I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, 1991. | MR | Zbl

[10] L. Marsalle, Slow points and fast points of local times, Ann. Probab. 27 (1999) 150-165. | MR | Zbl

[11] E.A. Perkins, S.J. Taylor, Uniform measure results for the image of subsets under Brownian motion, Probab. Theory Related Fields 76 (1987) 257-289. | MR | Zbl

[12] D. Ray, Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion, Trans. Amer. Math. Soc. 106 (1963) 436-444. | MR | Zbl

[13] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, 1998. | Zbl

[14] N.R. Shieh, S.J. Taylor, Logarithmic multifractal spectrum of stable occupation measure, Stochastic Process Appl. 79 (1998) 249-261. | MR | Zbl

[15] C.J. Stone, The set of zeros of a semi-stable process, Illinois J. Math. 7 (1963) 631-637. | MR | Zbl

Cité par Sources :