@article{AIHPB_2005__41_6_997_0, author = {Gou\"ezel, S\'ebastien}, title = {Berry-Esseen theorem and local limit theorem for non uniformly expanding maps}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {997--1024}, publisher = {Elsevier}, volume = {41}, number = {6}, year = {2005}, doi = {10.1016/j.anihpb.2004.09.002}, zbl = {02231405}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2004.09.002/} }
TY - JOUR AU - Gouëzel, Sébastien TI - Berry-Esseen theorem and local limit theorem for non uniformly expanding maps JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2005 SP - 997 EP - 1024 VL - 41 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpb.2004.09.002/ DO - 10.1016/j.anihpb.2004.09.002 LA - en ID - AIHPB_2005__41_6_997_0 ER -
%0 Journal Article %A Gouëzel, Sébastien %T Berry-Esseen theorem and local limit theorem for non uniformly expanding maps %J Annales de l'I.H.P. Probabilités et statistiques %D 2005 %P 997-1024 %V 41 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpb.2004.09.002/ %R 10.1016/j.anihpb.2004.09.002 %G en %F AIHPB_2005__41_6_997_0
Gouëzel, Sébastien. Berry-Esseen theorem and local limit theorem for non uniformly expanding maps. Annales de l'I.H.P. Probabilités et statistiques, Tome 41 (2005) no. 6, pp. 997-1024. doi : 10.1016/j.anihpb.2004.09.002. http://archive.numdam.org/articles/10.1016/j.anihpb.2004.09.002/
[1] An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, vol. 50, American Mathematical Society, 1997. | MR | Zbl
,[2] The Poincaré series of , Ergodic Theory Dynam. Systems 19 (1999) 1-20. | MR | Zbl
, ,[3] Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps, Stochastics and Dynamics 1 (2001) 193-237. | MR | Zbl
, ,[4] Remarks on the tightness of cocycles, Colloq. Math. 8485 (2000) 363-376. | MR | Zbl
, ,[5] J.F. Alves, S. Luzzatto, V. Pinheiro, Markov structures and decay of correlations for non-uniformly expanding dynamical systems, Preprint, 2002.
[6] Absolutely convergent Fourier expansions for non-commutative normed rings, Ann. Math. 43 (1942) 409-418. | MR | Zbl
, ,[7] Probability, Addison-Wesley, 1968. | MR | Zbl
,[8] Transformations dilatantes de l'intervalle et théorèmes limites, Astérisque 238 (1996) 1-109. | Numdam | MR | Zbl
,[9] Decay of correlations in one-dimensional dynamics, Ann. Sci. École Norm. Sup. 36 (2003) 621-646. | Numdam | MR | Zbl
, , ,[10] Méthode de martingales et flot géodésique sur une surface de courbure constante négative, Ergodic Theory Dynam. Systems 21 (2) (2001) 421-441. | MR | Zbl
, ,[11] Limit theorems for partially hyperbolic systems, Trans. Amer. Math. Soc. 356 (2004) 1637-1689. | MR | Zbl
,[12] vol. 2, Wiley Series in Probability and Mathematical Statistics, Wiley, 1966. | MR | Zbl
, An Introduction to Probability Theory and its Applications,[13] On Banach Algebras, Renewal Measures and Regenerative Processes, CWI Tract, vol. 38, Centrum voor Wiskunde en Informatica, Amsterdam, 1987. | MR | Zbl
,[14] Central limit theorem and stable laws for intermittent maps, Probab. Theory Related Fields 128 (2004) 82-122. | MR | Zbl
,[15] S. Gouëzel, Regularity of coboundaries for non uniformly expanding Markov maps, Preprint, 2004.
[16] Sharp polynomial bounds for the decay of correlations, Israel J. Math. 139 (2004) 29-65. | MR | Zbl
,[17] Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988) 73-98. | Numdam | MR | Zbl
, ,[18] Sur un théorème spectral et son application aux noyaux lipschitziens, Proc. Amer. Math. Soc. 118 (1993) 627-634. | MR | Zbl
,[19] Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen, 1971, With a supplementary chapter by I.A. Ibragimov and V.V. Petrov. Translation from the Russian edited by J.F.C. Kingman. | MR | Zbl
, ,[20] Théorie ergodique pour des classes d'opérations non complètement continues, Ann. Math. 47 (1950) 140-147. | MR | Zbl
, ,[21] A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 18 (1967) 217-229. | MR | Zbl
,[22] S. Le Borgne, F. Pène, Décorrélation multiple pour certains systèmes quasi-hyperboliques. Applications, Preprint.
[23] Central limit theorems for deterministic systems, in: International Conference on Dynamical Systems, Montevideo 1995, Pitman Research Notes in Mathematics, vol. 362, 1996. | MR | Zbl
,[24] A probabilistic approach to intermittency, Ergodic Theory Dynam. Systems 19 (1999) 671-685. | MR | Zbl
, , ,[25] Coboundaries and homomorphisms for nonsingular actions and a problem of H. Helson, Proc. L.M.S. 40 (1980) 443-475. | MR | Zbl
, ,[26] Invariance principles for interval maps with an indifferent fixed point, Comm. Math. Phys. 229 (2002) 337-346. | MR | Zbl
, ,[27] Étude d’une transformation - non uniformément hyperbolique de l’intervalle , Bull. Soc. Math. France 132 (2004) 81-103. | Numdam | MR | Zbl
,[28] Asymptotic behavior of the coefficients in Levi-Wiener theorems on absolutely converging trigonometric series, Siberian Math. J. 14 (1973) 917-923. | MR | Zbl
,[29] Asymptotic behavior of the coefficients of functions of power series and Fourier series, Siberian Math. J. 17 (1977) 492-498. | MR | Zbl
,[30] Un théorème de la limite locale pour une classe de transformations dilatantes et monotones par morceaux, Ann. Probab. 11 (1983) 772-788. | MR | Zbl
,[31] Functional Analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, 1991. | MR | Zbl
,[32] Subexponential decay of correlations, Invent. Math. 150 (2002) 629-653. | MR | Zbl
,[33] Local limit theorem for Lorentz process and its recurrence in the plane, Ergodic Theory Dynam. Systems 24 (2004) 257-278. | MR | Zbl
, ,[34] Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2) 147 (1998) 585-650. | MR | Zbl
,[35] Recurrence times and rates of mixing, Israel J. Math. 110 (1999) 153-188. | MR | Zbl
,[36] Stable limits for probability preserving maps with indifferent fixed points, Stochastics and Dynamics 3 (2003) 83-99. | MR | Zbl
,Cité par Sources :