@article{AIHPB_2006__42_4_455_0, author = {Le Gall, Jean-Fran\c{c}ois and Weill, Mathilde}, title = {Conditioned brownian trees}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {455--489}, publisher = {Elsevier}, volume = {42}, number = {4}, year = {2006}, doi = {10.1016/j.anihpb.2005.08.001}, mrnumber = {2242956}, zbl = {1107.60053}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2005.08.001/} }
TY - JOUR AU - Le Gall, Jean-François AU - Weill, Mathilde TI - Conditioned brownian trees JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2006 SP - 455 EP - 489 VL - 42 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpb.2005.08.001/ DO - 10.1016/j.anihpb.2005.08.001 LA - en ID - AIHPB_2006__42_4_455_0 ER -
%0 Journal Article %A Le Gall, Jean-François %A Weill, Mathilde %T Conditioned brownian trees %J Annales de l'I.H.P. Probabilités et statistiques %D 2006 %P 455-489 %V 42 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpb.2005.08.001/ %R 10.1016/j.anihpb.2005.08.001 %G en %F AIHPB_2006__42_4_455_0
Le Gall, Jean-François; Weill, Mathilde. Conditioned brownian trees. Annales de l'I.H.P. Probabilités et statistiques, Volume 42 (2006) no. 4, pp. 455-489. doi : 10.1016/j.anihpb.2005.08.001. http://archive.numdam.org/articles/10.1016/j.anihpb.2005.08.001/
[1] Avoiding probabilities for Brownian snakes and super-Brownian motion, Electron. J. Probab. 2 (3) (1997) 27. | MR | Zbl
, ,[2] Representations of the Brownian snake with drift, Stochastics Stochastics Rep. 73 (2002) 287-308. | MR | Zbl
, ,[3] The continuum random tree I, Ann. Probab. 19 (1991) 1-28. | MR | Zbl
,[4] The continuum random tree. II. An overview, in: Stochastic Analysis, Durham, 1990, London Math. Soc. Lecture Note Ser., vol. 167, Cambridge Univ. Press, Cambridge, 1991, pp. 23-70. | MR | Zbl
,[5] The continuum random tree III, Ann. Probab. 21 (1993) 248-289. | MR | Zbl
,[6] Tree-based models for random distribution of mass, J. Statist. Phys. 73 (1993) 625-641. | MR | Zbl
,[7] Random trees between two walls: exact partition function, J. Phys. A 36 (2003) 12349-12366. | MR | Zbl
, , ,[8] Statistics of planar graphs viewed from a vertex: a study via labeled trees, Nucl. Phys. B 675 (2003) 631-660. | MR | Zbl
, , ,[9] P. Chassaing, B. Durhuus, Statistical Hausdorff dimension of labelled trees and quadrangulations, Preprint, 2003.
[10] Random planar lattices and integrated super-Brownian excursion, Probab. Theory Related Fields 128 (2004) 161-212. | MR | Zbl
, ,[11] Planar trees are well labeled trees, Canad. J. Math. 33 (1981) 1023-1042. | MR | Zbl
, ,[12] Computation of moments for the length of the one dimensional ISE support, Electron. J. Probab. 8 (17) (2003) 15. | MR | Zbl
,[13] The scaling limit of lattice trees in high dimensions, Comm. Math. Phys. 198 (1998) 69-104. | MR | Zbl
, ,[14] A limit theorem for the contour process of conditioned Galton-Watson trees, Ann. Probab. 31 (2003) 996-1027. | MR | Zbl
,[15] Probabilistic and fractal aspects of Lévy trees, Probab. Theory Related Fields 131 (2005) 553-603. | MR | Zbl
, ,[16] S.N. Evans, J.W. Pitman, A. Winter, Rayleigh processes, real trees and root growth with re-grafting, Probab. Theory Related Fields (2003), in press. | Zbl
[17] The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion. Probabilistic techniques in equilibrium and nonequilibrium statistical physics, J. Math. Phys. 41 (2000) 1244-1293. | MR | Zbl
, ,[18] S. Janson, J.F. Marckert, Convergence of discrete snakes, J. Theoret. Probab. (2003), in press. | MR | Zbl
[19] Decomposing the branching Brownian path, Ann. Probab. 2 (1992) 973-986. | MR | Zbl
, ,[20] Random Measures, Academic Press, London, 1975. | MR | Zbl
,[21] Brownian excursions, trees and measure-valued branching processes, Ann. Probab. 19 (1991) 1399-1439. | MR | Zbl
,[22] The uniform random tree in a Brownian excursion, Probab. Theory Related Fields 96 (1993) 369-383. | MR | Zbl
,[23] The Brownian snake and solutions of in a domain, Probab. Theory Related Fields 102 (1995) 393-432. | Zbl
,[24] Spatial Branching Processes, Random Snakes and Partial Differential Equations, Lectures Math. ETH Zürich, Birkhäuser, Boston, 1999. | MR | Zbl
,[25] J.F. Le Gall, A conditional limit theorem for tree-indexed random walk, Stochastic Process. Appl. (2005), in press. | MR | Zbl
[26] State spaces of the snake and its tour - convergence of the discrete snake, J. Theoret. Probab. 16 (2004) 1015-1046. | MR | Zbl
, ,[27] J.F. Marckert, A. Mokkadem, Limits of normalized quadrangulations. The Brownian map, Preprint, 2004. | MR
[28] Continuous Martingales and Brownian Motion, Springer, Berlin, 1991. | MR | Zbl
, ,[29] Convergence of critical oriented percolation to super-Brownian motion above dimensions, Ann. Inst. H. Poincaré Probab. Statist. 39 (2003) 413-485. | Numdam | MR | Zbl
, ,[30] A relation between Brownian bridge and Brownian excursion, Ann. Probab. 7 (1979) 143-149. | MR | Zbl
,[31] Loi de l'indice du lacet brownien, et distribution de Hartman-Watson, Z. Wahr. Verw. Gebiete 53 (1980) 71-95. | MR | Zbl
,Cited by Sources: