@article{AIHPB_2007__43_3_299_0, author = {Rivero, V{\'\i}ctor}, title = {Sinaǐ's condition for real valued {L\'evy} processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {299--319}, publisher = {Elsevier}, volume = {43}, number = {3}, year = {2007}, doi = {10.1016/j.anihpb.2006.03.004}, zbl = {1115.60049}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2006.03.004/} }
TY - JOUR AU - Rivero, Víctor TI - Sinaǐ's condition for real valued Lévy processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2007 SP - 299 EP - 319 VL - 43 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpb.2006.03.004/ DO - 10.1016/j.anihpb.2006.03.004 LA - en ID - AIHPB_2007__43_3_299_0 ER -
%0 Journal Article %A Rivero, Víctor %T Sinaǐ's condition for real valued Lévy processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2007 %P 299-319 %V 43 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpb.2006.03.004/ %R 10.1016/j.anihpb.2006.03.004 %G en %F AIHPB_2007__43_3_299_0
Rivero, Víctor. Sinaǐ's condition for real valued Lévy processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007) no. 3, pp. 299-319. doi : 10.1016/j.anihpb.2006.03.004. http://archive.numdam.org/articles/10.1016/j.anihpb.2006.03.004/
[1] A local limit theorem for random walk maxima with heavy tails, Statist. Probab. Lett. 56 (4) (2002) 399-404. | MR | Zbl
, , , , ,[2] Lévy Processes, Cambridge Tracts in Mathematics, vol. 121, Cambridge University Press, Cambridge, 1996. | MR | Zbl
,[3] Cramér's estimate for Lévy processes, Statist. Probab. Lett. 21 (5) (1994) 363-365. | MR | Zbl
, ,[4] Regular Variation, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1989. | MR | Zbl
, , ,[5] On moments of ladder height variables, Adv. Appl. Math. 7 (1) (1986) 46-54. | MR | Zbl
,[6] F. De Weert, Attraction to stable distributions for Lévy processes at zero, Technical report, University of Manchester, 2003.
[7] Fluctuation theory for Lévy processes, in: Lévy Processes, Birkhäuser Boston, Boston, MA, 2001, pp. 57-66. | MR | Zbl
,[8] Stability of the overshoot for Lévy processes, Ann. Probab. 30 (1) (2002) 188-212. | MR | Zbl
, ,[9] Some limit theorems for sums of independent random quantities with infinite mathematical expectations, Izv. Akad. Nauk SSSR Ser. Mat. 19 (1955) 247-266. | MR | Zbl
,[10] The strong law of large numbers when the mean is undefined, Trans. Amer. Math. Soc. 185 (1973) 371-381, (1974). | MR | Zbl
,[11] Sample functions of stochastic processes with stationary, independent increments, in: Advances in Probability and Related Topics, vol. 3, Dekker, New York, 1974, pp. 241-396. | MR | Zbl
,[12] Lower functions for increasing random walks and subordinators, Z. Wahrsch. Verw. Gebiete 18 (1971) 167-182. | MR | Zbl
, ,[13] Regular Variation, Extensions and Tauberian Theorems, CWI Tract, vol. 40, Stichting Mathematisch Centrum voor Wiskunde en Informatica, Amsterdam, 1987. | MR | Zbl
, ,[14] The Theory of Stochastic Processes. II, Die Grundlehren der Mathematischen Wissenschaften, vol. 218, Springer-Verlag, New York, 1975, Translated from the Russian by Samuel Kotz. | MR | Zbl
, ,[15] Harmonic renewal measures, Z. Wahrsch. Verw. Gebiete 59 (3) (1982) 391-409. | MR | Zbl
, , ,[16] Tail behaviour of ladder-height distributions in random walks, J. Appl. Probab. 22 (3) (1985) 705-709. | MR | Zbl
,[17] The limit points of a normalized random walk, Ann. Math. Statist. 41 (1970) 1173-1205. | MR | Zbl
,[18] Subexponential distributions and integrated tails, J. Appl. Probab. 25 (1) (1988) 132-141. | MR | Zbl
,[19] Ruin probabilities and overshoots for general Lévy insurance risk processes, Ann. Appl. Probab. 14 (4) (2004) 1766-1801. | MR | Zbl
, , ,[20] Distribution of the first ladder moment and height, and fluctuations of a random walk, Teor. Verojatnost. i Primenen. 16 (1971) 539-613. | MR | Zbl
,[21] Lévy Processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999. | MR | Zbl
,[22] Asymptotic behaviour of Wiener-Hopf factors of a random walk, Stochastic Processes Appl. 5 (1) (1977) 27-37. | Zbl
,[23] V. Vigon, Simplifiez vos Lévy en titillant la factorisation de Wiener-Hopf, PhD thesis, Université Louis Pasteur, 2002.
[24] Votre Lévy rampe-t-il ?, J. London Math. Soc. (2) 65 (1) (2002) 243-256. | MR | Zbl
,Cité par Sources :