On perturbations of strongly admissible prior distributions
Annales de l'I.H.P. Probabilités et statistiques, Volume 43 (2007) no. 5, p. 633-653
@article{AIHPB_2007__43_5_633_0,
     author = {Eaton, Morris L. and Hobert, James P. and Jones, Galin L.},
     title = {On perturbations of strongly admissible prior distributions},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Elsevier},
     volume = {43},
     number = {5},
     year = {2007},
     pages = {633-653},
     doi = {10.1016/j.anihpb.2006.09.006},
     zbl = {1118.62009},
     mrnumber = {2347100},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2007__43_5_633_0}
}
Eaton, Morris L.; Hobert, James P.; Jones, Galin L. On perturbations of strongly admissible prior distributions. Annales de l'I.H.P. Probabilités et statistiques, Volume 43 (2007) no. 5, pp. 633-653. doi : 10.1016/j.anihpb.2006.09.006. http://www.numdam.org/item/AIHPB_2007__43_5_633_0/

[1] L.D. Brown, Admissible estimators, recurrent diffusions, and insoluble boundary value problems, Annals of Mathematical Statistics 42 (1971) 855-904. | MR 286209 | Zbl 0246.62016

[2] L.D. Brown, Fundamentals of Statistical Exponential Families with Applications to Statistical Decision Theory, Institute of Mathematical Statistics, Hayward, CA, 1986. | MR 882001 | Zbl 0685.62002

[3] K.L. Chung, W.H.J. Fuchs, On the distribution of values of sums of random variables, Memoirs of the American Mathematical Society 6 (1951) 1-12. | MR 40610 | Zbl 0042.37502

[4] M.L. Eaton, A method for evaluating improper prior distributions, in: Gupta S.S., Berger J.O. (Eds.), Statistical Decision Theory and Related Topics III, vol. 1, Academic Press, Inc., New York, 1982. | MR 705296 | Zbl 0581.62005

[5] M.L. Eaton, A statistical diptych: Admissible inferences-recurrence of symmetric Markov chains, Annals of Statistics 20 (1992) 1147-1179. | MR 1186245 | Zbl 0767.62002

[6] M.L. Eaton, Admissibility in quadratically regular problems and recurrence of symmetric Markov chains: Why the connection?, Journal of Statistical Planning and Inference 64 (1997) 231-247. | MR 1621615 | Zbl 0944.62010

[7] M.L. Eaton, Markov chain conditions for admissibility in estimation problems with quadratic loss, in: De Gunst M., Klaassen C., Van Der Vaart A. (Eds.), State of the Art in Probability and Statistics - A Festschrift for Willem R. van Zwet, The IMS Lecture Notes Series, vol. 36, IMS, Beachwood, OH, 2001.

[8] M.L. Eaton, Evaluating improper priors and the recurrence of symmetric Markov chains: An overview, in: Dasgupta A. (Ed.), A Festschrift to Honor Herman Rubin, The IMS Lecture Notes Series, vol. 45, IMS, Beachwood, OH, 2004. | MR 2126883

[9] J.P. Hobert, D. Marchev, J. Schweinsberg, Stability of the tail Markov chain and the evaluation of improper priors for an exponential rate parameter, Bernoulli 10 (2004) 549-564. | MR 2061443 | Zbl 1049.60068

[10] J.P. Hobert, C.P. Robert, Eaton’s Markov chain, its conjugate partner and P-admissibility, Annals of Statistics 27 (1999) 361-373. | MR 1701115 | Zbl 0945.62012

[11] J.P. Hobert, J. Schweinsberg, Conditions for recurrence and transience of a Markov chain on Z + and estimation of a geometric success probability, Annals of Statistics 30 (2002) 1214-1223. | MR 1926175 | Zbl 1103.60315

[12] I. Johnstone, Admissibility, difference equations and recurrence in estimating a Poisson mean, Annals of Statistics 12 (1984) 1173-1198. | MR 760682 | Zbl 0557.62006

[13] I. Johnstone, Admissible estimation, Dirichlet principles and recurrence of birth-death chains on Z + p , Probability Theory and Related Fields 71 (1986) 231-269. | MR 816705 | Zbl 0592.62009

[14] W.-L. Lai, Admissibility and the recurrence of Markov chains with applications, Ph.D. thesis, University of Minnesota, 1996.

[15] S.P. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag, London, 1993. | MR 1287609 | Zbl 0925.60001