New M-estimators in semi-parametric regression with errors in variables
Annales de l'I.H.P. Probabilités et statistiques, Volume 44 (2008) no. 3, p. 393-421

In the regression model with errors in variables, we observe n i.i.d. copies of (Y,Z) satisfying Y=f θ 0 (X)+ξ and Z=X+ε involving independent and unobserved random variables X,ξ,ε plus a regression function f θ 0 , known up to a finite dimensional θ 0 . The common densities of the X i ’s and of the ξ i ’s are unknown, whereas the distribution of ε is completely known. We aim at estimating the parameter θ 0 by using the observations (Y 1 ,Z 1 ),...,(Y n ,Z n ). We propose an estimation procedure based on the least square criterion S ˜ θ 0 ,g (θ)=𝔼 θ 0 ,g [((Y-f θ (X)) 2 w(X)] where w is a weight function to be chosen. We propose an estimator and derive an upper bound for its risk that depends on the smoothness of the errors density p ε and on the smoothness properties of w(x)f θ (x). Furthermore, we give sufficient conditions that ensure that the parametric rate of convergence is achieved. We provide practical recipes for the choice of w in the case of nonlinear regression functions which are smooth on pieces allowing to gain in the order of the rate of convergence, up to the parametric rate in some cases. We also consider extensions of the estimation procedure, in particular, when a choice of w θ depending on θ would be more appropriate.

Dans le modèle de régression avec erreurs sur les variables, nous observons n v.a. i.i.d. de même loi que (Y,Z) satisfaisant aux relations Y=f θ 0 (X)+ξ et Z=X+ε, où les v.a. X,ξ,ε sont indépendantes, pas observées, et la fonction de régression f θ 0 est connue à un paramètre de dimension finie θ 0 près. Les densités de X et de ξ sont inconnues tandis que la loi de ε est entièrement connue. Nous estimons le paramètre θ 0 à partir des observations (Y 1 ,Z 1 ),...,(Y n ,Z n ). Nous proposons une procédure d’estimation basée sur le critère des moindres carrés S ˜ θ 0 ,g (θ)=𝔼 θ 0 ,g [((Y-f θ (X)) 2 w(X)], où w est une fonction de poids à choisir. Nous définissons l’estimateur et calculons la borne supérieure du risque de cet estimateur, qui dépend de la régularité de la densité des erreurs p ε et de la régularité en x de w(x)f θ (x). De plus, nous établissons des conditions suffisantes pour que les estimateurs atteignent la vitesse paramétrique. Nous décrivons des méthodes pratiques pour le choix de x dans le cas des fonctions de régression non-linéaires qui sont régulières par morceaux permettant de gagner des ordres de vitesse allant jusqu’à la vitesse paramétrique dans certains cas. Nous considérons également des extensions de cette procédure d’estimation, en particulier au cas où un choix de w θ dépendant de θ serait plus approprié.

DOI : https://doi.org/10.1214/07-AIHP107
Classification:  62J02,  62F12,  62G05,  62G20
Keywords: asymptotic normality, consistency, deconvolution kernel estimator, errors-in-variables model, M-estimators, ordinary smooth and super-smooth functions, rates of convergence, semi-parametric nonlinear regression
@article{AIHPB_2008__44_3_393_0,
     author = {Butucea, Cristina and Taupin, Marie-Luce},
     title = {New $M$-estimators in semi-parametric regression with errors in variables},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {44},
     number = {3},
     year = {2008},
     pages = {393-421},
     doi = {10.1214/07-AIHP107},
     zbl = {1206.62068},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2008__44_3_393_0}
}
Butucea, Cristina; Taupin, Marie-Luce. New $M$-estimators in semi-parametric regression with errors in variables. Annales de l'I.H.P. Probabilités et statistiques, Volume 44 (2008) no. 3, pp. 393-421. doi : 10.1214/07-AIHP107. http://www.numdam.org/item/AIHPB_2008__44_3_393_0/

[1] S. Baran. A consistent estimator in general functional errors-in-variables models. Metrika 51 (2000) 117-132 (electronic). | MR 1790927 | Zbl 1093.62552

[2] P. J. Bickel, A. J. C. Klaassen, Y. Ritov and J. A. Wellner. Efficient and Adaptative Estimation for Semiparametric Model. Johns Hopkins Univ. Press, Baltimore, MD, 1993. | MR 1245941 | Zbl 0786.62001

[3] Bickel, P. J. and A. J. C. Ritov. Efficient estimation in the errors-in-variables model. Ann. Statist. 15 (1987) 513-540. | MR 888423 | Zbl 0643.62029

[4] Billingsley, P. Probability and Measure, 3rd edition. Wiley. New York, 1995. | MR 1324786 | Zbl 0822.60002

[5] R. J. Carroll, D. Ruppert and L. A. Stefanski. Measurement Error in Nonlinear Models. Chapman and Hall, London, 1995. | MR 1630517 | Zbl 0853.62048

[6] L. K. Chan and T. K. Mak. On the polynomial functionnal relationship. J. Roy. Statist. Soc. Ser. B 47 (1985) 510-518. | MR 844482

[7] C. H. Cheng and J. W. Van Ness. On estimating linear relationships when both variables are subject to errors. J. Roy. Statist. Soc. Ser. B 56 (1994) 167-183. | MR 1257805 | Zbl 0800.62453

[8] F. Comte and M.-L. Taupin. Semiparametric estimation in the (auto)-regressive β-mixing model with errors-in-variables. Math. Methods Statist. 10 (2001) 121-160. | MR 1851745 | Zbl 1005.62036

[9] I. Fazekas, S. Baran, A. Kukush, and J. Lauridsen. Asymptotic properties in space and time of an estimator in nonlinear functional errors-in-variables models. Random Oper. Stochastic Equations 7 (1999) 389-412. | MR 1709899 | Zbl 0953.62061

[10] I. Fazekas and A. G. Kukush. Asymptotic properties of estimators in nonlinear functional errors-in-variables with dependent error terms. J. Math. Sci. (New York) 92 (1998) 3890-3895. | MR 1666219 | Zbl 0919.62062

[11] M. V. Fedoryuk. Asimptotika: integraly i ryady. “Nauka”, Moscow, 1987. | MR 950167

[12] W. A. Fuller. Measurement Error Models. Wiley, New York, 1987. | MR 898653 | Zbl 0800.62413

[13] L. J. Gleser. Improvements of the naive approach to estimation in nonlinear errors-in-variables regression models. Contemp. Math. 112 (1990) 99-114. | MR 1087101 | Zbl 0722.62044

[14] J. A. Hausman, W. K. Newey, I. Ichimura and J. L. Powell. Identification and estimation of polynomial errors-in-variables models. J. Econometrics 50 (1991) 273-295. | MR 1147115 | Zbl 0745.62065

[15] J. A. Hausman, W. K. Newey and J. L. Powell. Nonlinear errors in variables estimation of some engel curves. J. Econometrics 65 (1995) 205-233. | MR 1324193 | Zbl 0825.62955

[16] H. Hong and E. Tamer. A simple estimator for nonlinear error in variable models. J. Econometrics 117 (2003) 1-19. | MR 2002282 | Zbl 1022.62047

[17] C. Hsiao. Consistent estimation for some nonlinear errors-in-variables models. J. Econometrics 41 (1989) 159-185. | MR 1007729 | Zbl 0705.62105

[18] C. Hsiao, L. Wang and Q. Wang. Estimation of nonlinear errors-in-variables models: an approximate solution. Statist. Papers 38 (1997) 1-25. | MR 1474937 | Zbl 0883.62066

[19] C. Hsiao and Q. K. Wang. Estimation of structural nonlinear errors-in-variables models by simulated least-squares method. Internat. Econom. Rev. 41 (2000) 523-542. | MR 1760462

[20] J. Kiefer and J. Wolfowitz. Consistency of the maximum likelihood estimator in the presence of infinitely many nuisance parameters. Ann. Math. Statist. 27 (1956) 887-906. | MR 86464 | Zbl 0073.14701

[21] A. Kukush and H. Schneeweiss. Comparing different estimators in a nonlinear measurement error model. I. Math. Methods Statist. 14 (2005) 53-79. | MR 2158071

[22] A. Kukush and H. Schneeweiss. Comparing different estimators in a nonlinear measurement error model. II. Math. Methods Statist. 14 (2005) 203-223. | MR 2160395

[23] O. V. Lepski and B. Y. Levit. Adaptive minimax estimation of infinitely differentiable functions. Math. Methods Statist. 7 (1998) 123-156. | MR 1643256 | Zbl 1103.62332

[24] T. Li. Estimation of nonlinear errors-in-variables models: a simulated minimum distance estimator. Statist. Probab. Lett. 47 (2000) 243-248. | MR 1747484 | Zbl 1054.62563

[25] T. Li. Robust and consistent estimation of nonlinear errors-in-variables models. J. Econometrics 110 (2002) 1-26. | MR 1920960 | Zbl 1030.62034

[26] S. A. Murphy and A. W. Van Der Vaart. Likelihood inference in the errors-in-variables model. J. Multivariate Anal. 59 (1996) 81-108. | MR 1424904 | Zbl 0865.62032

[27] V. V. Petrov. Limit Theorems of Probability Theory. Oxford Science Publications, New York, 1995. | MR 1353441 | Zbl 0826.60001

[28] O. Reiersøl. Identifiability of a linear relation between variables which are subject to error. Econometrica. 18 (1950) 375-389. | MR 38054 | Zbl 0040.22502

[29] M.-L. Taupin. Semi-parametric estimation in the nonlinear structural errors-in-variables model. Ann. Statist. 29 (2001) 66-93. | MR 1833959 | Zbl 1029.62039

[30] A. Van Der Vaart. Semiparametric statistics. Lectures on Probability Theory and Statistics (Saint-Flour, 1999) 331-457. Lecture Notes in Math. 1781. Berlin, Springer, 2002. | MR 1915446 | Zbl 1013.62031

[31] A. W. Van Der Vaart. Estimating a real parameter in a class of semiparametric models. Ann. Statist. 16 (1988) 1450-1474. | MR 964933 | Zbl 0665.62034

[32] A. W. Van Der Vaart. Efficient estimation in semi-parametric mixture models. Ann. Statist. 24 (1996) 862-878. | MR 1394993 | Zbl 0860.62029

[33] K. M. Wolter and W. A. Fuller. Estimation of nonlinear errors-in variables models. Ann. Statist. 10 (1982) 539-548. | MR 653528 | Zbl 0512.62065

[34] K. M. Wolter and W. A. Fuller. Estimation of the quadratic errors-in-variables model. Biometrika 69 (1982) 175-182. | Zbl 0555.62056