In this paper we obtain the central limit theorems, moderate deviations and the laws of the iterated logarithm for the energy
Cet article est consacré à l’étude du théorème central limite, des déviations modérées et des lois du logarithme itéré pour l’énergie
Keywords: charged polymer, self-intersection local time, central limit theorem, moderate deviation, laws of the iterated logarithm
@article{AIHPB_2008__44_4_638_0, author = {Chen, Xia}, title = {Limit laws for the energy of a charged polymer}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {638--672}, publisher = {Gauthier-Villars}, volume = {44}, number = {4}, year = {2008}, doi = {10.1214/07-AIHP120}, mrnumber = {2446292}, zbl = {1178.60024}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/07-AIHP120/} }
TY - JOUR AU - Chen, Xia TI - Limit laws for the energy of a charged polymer JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 638 EP - 672 VL - 44 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/07-AIHP120/ DO - 10.1214/07-AIHP120 LA - en ID - AIHPB_2008__44_4_638_0 ER -
Chen, Xia. Limit laws for the energy of a charged polymer. Annales de l'I.H.P. Probabilités et statistiques, Volume 44 (2008) no. 4, pp. 638-672. doi : 10.1214/07-AIHP120. http://archive.numdam.org/articles/10.1214/07-AIHP120/
[1] Self-intersection local times for random walk, and random walk in random scenery in dimension d≥5. Preprint, 2005. Available at http://arxiv.org/math.PR/0509721arXiv:math.PR/0509721. | MR
and .[2] Large deviation estimates for self-intersection local times for simple random walk in ℤ3. Probab. Theory Related Fields. To appear. | MR | Zbl
.[3] Moderate deviations and laws of the iterated logarithm for the renormalized self-intersection local times of planar random walks. Electron. J. Probab. 11 (2006) 993-1030. | EuDML | MR | Zbl
, and .[4] A model of continuous polymers with random charges. J. Math. Phys. 38 (1997) 5143-5152. | MR | Zbl
and .[5] On the law of the iterated logarithm for local times of recurrent random walks. In High Dimensional Probability II (Seattle, WA, 1999) 249-259, 2000. | MR | Zbl
.[6] Exponential asymptotics and law of the iterated logarithm for intersection local times of random walks. Ann. Probab. 32 (2004) 3248-3300. | MR | Zbl
.[7] Moderate deviations and law of the iterated logarithm for intersections of the range of random walks. Ann. Probab. 33 (2005) 1014-1059. | MR | Zbl
.[8] Large and moderate deviations for intersection local times. Probab. Theory Related Fields 128 (2004) 213-254. | MR | Zbl
and .[9] Large Deviations Techniques and Applications, 2nd edition. Springer, New York, 1998. | MR | Zbl
and .[10] A model of directed walks with random self interactions. Europhys. Lett. 18 (1992) 361-366.
, and .[11] Low-temperature properties of directed walks with random self-interactions. J. Phys. A 27 (1994) 5485-5493. | MR | Zbl
and .[12] A survey of one-dimensional random polymers. J. Statist. Phys. 103 (2001) 915-944. | MR | Zbl
and .[13] The range of transient random walk. J. Anal. Math. 24 (1971) 369-393. | MR | Zbl
and .[14] Further limit theorem for the range of random walk. J. Anal. Math. 27 (1974) 94-117. | MR | Zbl
and .[15] Asymptotic behavior of the local time of a recurrent random walk. Ann. Probab. 11 (1984) 64-85. | MR | Zbl
and .[16] Polymers with self-interactions. Europhys. Lett. 14 (1991) 421-426.
and .[17] The range of stable random walks. Ann. Probab. 19 (1991) 650-705. | MR | Zbl
and .[18] Thermodynamics of a Brownian bridge polymer model in a random environment. J. Phys. A 29 (1996) 1267-1279. | MR | Zbl
and .[19] Random Walks in Random and Non-Random Environments. World Scientific, London, 1990. | Zbl
.[20] Random walks and intersection local time. Ann. Probab. 18 (1990) 959-977. | MR | Zbl
.[21] Principles of Random Walk. Van Nostrand, Princeton, New Jersey, 1964. | MR | Zbl
.Cited by Sources: