We consider the problem of nonparametric estimation of signal singularities from indirect and noisy observations. Here by singularity, we mean a discontinuity (change-point) of the signal or of its derivative. The model of indirect observations we consider is that of a linear transform of the signal, observed in white noise. The estimation problem is analyzed in a minimax framework. We provide lower bounds for minimax risks and propose rate-optimal estimation procedures.
Cet article a pour but d'étudier le problème d'estimation non-paramétrique de singularités d'un signal à partir des observations indirectes et bruitées. Les singularités que nous considérons ici sont des points de discontinuité (points de rupture) du signal ou de ses derivées. Nous étudions le modèle où l'on dispose d'observations indirectes d'une transformée linéaire du signal dans le bruit blanc gaussien. Le problème de l'estimation est analysé dans un cadre minimax. Nous obtenons des minorations du risque minimax et nous proposons des estimateurs qui sont optimaux en vitesse de convergence.
Keywords: change-point estimations, ill-posed problems, minimax risk, sequence space model, optimal rates of convergence
@article{AIHPB_2008__44_5_787_0, author = {Goldenshluger, A. and Juditsky, A. and Tsybakov, A. B. and Zeevi, A.}, title = {Change-point estimation from indirect observations. 1. {Minimax} complexity}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {787--818}, publisher = {Gauthier-Villars}, volume = {44}, number = {5}, year = {2008}, doi = {10.1214/07-AIHP110}, mrnumber = {2453845}, zbl = {1206.62048}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/07-AIHP110/} }
TY - JOUR AU - Goldenshluger, A. AU - Juditsky, A. AU - Tsybakov, A. B. AU - Zeevi, A. TI - Change-point estimation from indirect observations. 1. Minimax complexity JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 787 EP - 818 VL - 44 IS - 5 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/07-AIHP110/ DO - 10.1214/07-AIHP110 LA - en ID - AIHPB_2008__44_5_787_0 ER -
%0 Journal Article %A Goldenshluger, A. %A Juditsky, A. %A Tsybakov, A. B. %A Zeevi, A. %T Change-point estimation from indirect observations. 1. Minimax complexity %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 787-818 %V 44 %N 5 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/07-AIHP110/ %R 10.1214/07-AIHP110 %G en %F AIHPB_2008__44_5_787_0
Goldenshluger, A.; Juditsky, A.; Tsybakov, A. B.; Zeevi, A. Change-point estimation from indirect observations. 1. Minimax complexity. Annales de l'I.H.P. Probabilités et statistiques, Volume 44 (2008) no. 5, pp. 787-818. doi : 10.1214/07-AIHP110. http://archive.numdam.org/articles/10.1214/07-AIHP110/
[1] Detecting abrupt changes by wavelet methods. J. Nonparametr. Stat. 14 (2002) 7-29. | MR | Zbl
and .[2] Detection of Abrupt Changes: Theory and Application. Prentice-Hall, Upper Saddle River, NJ, 1993. | MR
and .[3] Penalized maximum likelihood and semiparametric second order efficiency. Ann. Statist. 34 (2006) 169-201. | MR | Zbl
. and .[4] Image processing for plane domains: change-point problems for the domain's area. Problems Inform. Transmission 31 (1995) 27-45. | MR | Zbl
and .[5] On the estimation of jump points in smooth curves. Ann. Inst. Statist. Math. 51 (1999) 231-251. | MR | Zbl
, and .[6] Optimal change-point estimation from indirect observations. Ann. Statist. 34 (2006) 350-372. | MR | Zbl
, and .[7] Change-point estimation from indirect observations 2. Adaptation. Annales de l'IHP 44 (2008) 819-836. | Numdam | MR
, , and .[8] Estimation of the time delay of a signal under nuisance parameters. Problems Inform. Transmission 25 (1989) 173-180. | MR | Zbl
.[9] The estimation of frequency. J. Appl. Probab. 10 (1973) 510-519. | MR | Zbl
.[10] Estimation of regression functions with a discontinuity in a derivative with local polynomial fits. Statist. Probab. Lett. 56 (2002) 329-343. | MR | Zbl
and .[11] Statistical Estimation: Asymptotic Theory. Springer, New York, 1981. | MR | Zbl
and .[12] Minimax estimation of a discontinuous signal. Theory Probab. Appl. 32 (1987) 727-730. | MR | Zbl
.[13] Statistical Inference for Ergodic Diffusion Processes. Springer, London, 2004. | MR | Zbl
.[14] Change-points in nonparametric regression analysis. Ann. Statist. 20 (1992) 737-761. | MR | Zbl
.[15] Optimal change-point estimation in inverse problems. Scand. J. Statist. 24 (1997) 503-521. | MR | Zbl
.[16] Estimation of a regression function with a sharp change point using boundary wavelets. Statist. Probab. Lett. 66 (2004) 435-448. | MR | Zbl
and .[17] The Estimation and Tracking of Frequency. Cambridge University Press, 2001. | MR | Zbl
and .[18] Minimax estimation of sharp change points. Ann. Statist. 26 (1998) 1379-1397. | MR | Zbl
.[19] On frequency estimation. Biometrika 74 (1988) 477-484. | MR | Zbl
and .[20] Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach Science Publishers, 1993. Translated from the 1987 Russian original. | MR | Zbl
, and .[21] Introduction à l'estimation non-paramétrique. Springer, Berlin, 2004. | MR | Zbl
.[22] Weak Convergence and Empirical Processes. Springer, New York, 1996. | MR | Zbl
and .[23] Jump and sharp cusp detection by wavelets. Biometrika 82 (1995) 385-397. | MR | Zbl
.[24] Detection of the number, locations and amplitudes of jumps. Comm. Statist. Stochastic Models 4 (1988) 445-455. | MR | Zbl
.[25] Trigonometirc Series, vol. I, 2nd edition. Cambridge University Press, 1959. | MR
.Cited by Sources: