Beltrán, J.; Landim, C.
A lattice gas model for the incompressible Navier-Stokes equation
Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 5 , p. 886-914
Zbl 1184.60035 | MR 2453775
doi : 10.1214/07-AIHP125
URL stable : http://www.numdam.org/item?id=AIHPB_2008__44_5_886_0

Classification:  60K35,  82C22
Nous retrouvons l'équation de Navier-Stokes comme limite incompressible d'un gas sur réseau où les particules peuvent sauter sur des distances mésoscopiques. Le résultat est valable en toute dimension supposant l'existence d'une solution lisse de l'équation de Navier-Stokes en un intervale de temps donné. La démonstration ne dépend pas des méthodes non-gradients ou l'analyse multi-échelle grâce aux sauts de longue portée.
We recover the Navier-Stokes equation as the incompressible limit of a stochastic lattice gas in which particles are allowed to jump over a mesoscopic scale. The result holds in any dimension assuming the existence of a smooth solution of the Navier-Stokes equation in a fixed time interval. The proof does not use nongradient methods or the multi-scale analysis due to the long range jumps.

Bibliographie

[1] R. Esposito, R. Marra and H. T. Yau. Diffusive limit of asymmetric simple exclusion. Rev. Math. Phys. 6 (1994) 1233-1267. MR 1301374 | Zbl 0841.60082

[2] R. Esposito, R. Marra and H. T. Yau. Navier-Stokes equations for stochastic particle systems on the lattice. Comm. Math. Phys. 182 (1996) 395-456. MR 1447299 | Zbl 0868.60079

[3] C. Kipnis and C. Landim. Scaling Limit of Interacting Particle Systems. Fundamental Principles of Mathematical Sciences 320. Springer, Berlin, 1999. MR 1707314 | Zbl 0927.60002

[4] V. V. Petrov. Sums of Independent Random Variables. Springer, New York, 1975. MR 388499 | Zbl 0322.60042

[5] J. Quastel. Diffusion of color in the simple exclusion process. Comm. Pure Appl. Math. XLV (1992) 623-679. MR 1162368 | Zbl 0769.60097

[6] S. R. S. Varadhan. Nonlinear diffusion limit for a system with nearest neighbor interactions II. In Asymptotic Problems in Probability Theory: Stochastic Models and Diffusion on Fractals. Pitman Res. Notes Math. Ser. 283 K. Elworthy and N. Ikeda (Eds), 75-128. Longman Sci. Tech., Harlow, 1993. MR 1354152 | Zbl 0793.60105

[7] H. T. Yau. Relative entropy and hydrodynamics of Ginsburg-Landau models. Lett. Math. Phys. 22 (1991) 63-80. MR 1121850 | Zbl 0725.60120