Soit un processus de Lévy réel quelconque et un subordinateur indépendant de . On considère les temps en lesquels le processus atteint un nouveau maximum par un saut de . Nous donnons une condition nécessaire et suffisante pour que l’ensemble de ces temps soit discret. Lorsque tel est le cas et que le processus dérive vers , nous décomposons son maximum absolu en cette suite de temps. Nous déduisons alors de cette décomposition une formule du type Pollaczek-Hinchin pour la loi du maximum absolu de .
Let where is a general one-dimensional Lévy process and an independent subordinator. Consider the times when a new supremum of is reached by a jump of the subordinator . We give a necessary and sufficient condition in order for such times to be discrete. When this is the case and drifts to , we decompose the absolute supremum of at these times, and derive a Pollaczek-Hinchin-type formula for the distribution function of the supremum.
Mots clés : Lévy process, subordinator, fluctuation theory, extrema, risk theory
@article{AIHPB_2008__44_5_977_0, author = {Song, Renming and Vondra\v{c}ek, Zoran}, title = {On suprema of {L\'evy} processes and application in risk theory}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {977--986}, publisher = {Gauthier-Villars}, volume = {44}, number = {5}, year = {2008}, doi = {10.1214/07-AIHP142}, mrnumber = {2453779}, zbl = {1178.60036}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/07-AIHP142/} }
TY - JOUR AU - Song, Renming AU - Vondraček, Zoran TI - On suprema of Lévy processes and application in risk theory JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 977 EP - 986 VL - 44 IS - 5 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/07-AIHP142/ DO - 10.1214/07-AIHP142 LA - en ID - AIHPB_2008__44_5_977_0 ER -
%0 Journal Article %A Song, Renming %A Vondraček, Zoran %T On suprema of Lévy processes and application in risk theory %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 977-986 %V 44 %N 5 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/07-AIHP142/ %R 10.1214/07-AIHP142 %G en %F AIHPB_2008__44_5_977_0
Song, Renming; Vondraček, Zoran. On suprema of Lévy processes and application in risk theory. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 5, pp. 977-986. doi : 10.1214/07-AIHP142. http://archive.numdam.org/articles/10.1214/07-AIHP142/
[1] Lévy Processes. Cambridge Univ. Press, 1996. | MR | Zbl
.[2] Regularity of the half-line for Lévy processes. Bull. Sci. Math. 121 (1997) 345-354. | MR | Zbl
.[3] Regenerative embedding of Markov sets. Probab. Theory Related Fields 108 (1997) 559-571. | MR | Zbl
.[4] Ruin probabilities and decompositions for general perturbed risk processes. Ann. Appl. Probab. 14 (2004) 1378-1397. | MR | Zbl
, , and .[5] Ruin probabilities for competing claim processes. J. Appl. Probab. 41 (2004) 679-690. | MR | Zbl
, , and .[6] Ruin probabilities and overshoots for general Lévy insurance risk processes. Ann. Appl. Probab. 14 (2004) 1766-1801. | MR | Zbl
, and .[7] On extreme ruinous behaviour of Lévy insurance risk processes. J. Appl. Probab. 43 (2006) 594-598. | MR | Zbl
and .[8] Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin, 2006. | MR | Zbl
.[9] Votre Lévy rampe-t-il? J. London Math. Soc. (2) 65 (2002) 243-256. | MR | Zbl
.Cité par Sources :