denote une lamination (compacte, nonsingulière) par surfaces de Riemann hyperboliques. On montre qu’ une mesure sur est harmonique si et seulement si elle est la projection d’une mesure sur le fibré tangent unitaire qui est invariante sous les flots géodesique et horocyclique.
denotes a (compact, nonsingular) lamination by hyperbolic Riemann surfaces. We prove that a probability measure on is harmonic if and only if it is the projection of a measure on the unit tangent bundle of which is invariant under both the geodesic and the horocycle flows.
Mots-clés : foliated spaces, harmonic measures, brownian motion on the hyperbolic plane, geodesic flow, horocycle flow
@article{AIHPB_2008__44_6_1078_0, author = {Bakhtin, Yuri and Mart\'anez, Matilde}, title = {A characterization of harmonic measures on laminations by hyperbolic {Riemann} surfaces}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1078--1089}, publisher = {Gauthier-Villars}, volume = {44}, number = {6}, year = {2008}, doi = {10.1214/07-AIHP147}, mrnumber = {2469335}, zbl = {1189.37033}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/07-AIHP147/} }
TY - JOUR AU - Bakhtin, Yuri AU - Martánez, Matilde TI - A characterization of harmonic measures on laminations by hyperbolic Riemann surfaces JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 1078 EP - 1089 VL - 44 IS - 6 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/07-AIHP147/ DO - 10.1214/07-AIHP147 LA - en ID - AIHPB_2008__44_6_1078_0 ER -
%0 Journal Article %A Bakhtin, Yuri %A Martánez, Matilde %T A characterization of harmonic measures on laminations by hyperbolic Riemann surfaces %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 1078-1089 %V 44 %N 6 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/07-AIHP147/ %R 10.1214/07-AIHP147 %G en %F AIHPB_2008__44_6_1078_0
Bakhtin, Yuri; Martánez, Matilde. A characterization of harmonic measures on laminations by hyperbolic Riemann surfaces. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 6, pp. 1078-1089. doi : 10.1214/07-AIHP147. http://archive.numdam.org/articles/10.1214/07-AIHP147/
[1] Sur le comportement statistique des feuilles de certains feuilletages holomorphes. Essays on geometry and related topics, Vol. 1, 2. Monogr. Enseign. Math. 38 15-41. Enseignement Math., Geneva, 2001. | MR | Zbl
and .[2] The foliated geodesic flow on Riccati equations, 2001. Preprint. | MR
, and .[3] Uniformization of surface laminations. Ann. Sci. École Norm. Sup. (4) 26 (1993) 489-516. | Numdam | MR | Zbl
.[4] The harmonic measures of Lucy Garnett. Adv. Math. 176 (2003) 187-247. | MR | Zbl
.[5] Eigenvalues in Riemannian Geometry. Academic Press Inc., Orlando, FL, 1984 (including a chapter by Burton Randol, with an appendix by Jozef Dodziuk). | MR | Zbl
.[6] Random conformal dynamical systems. Geom. Funct. Anal. (2006). To appear. | MR | Zbl
and .[7] Foliations, the ergodic theorem and Brownian motion. J. Funct. Anal. 51 (1983) 285-311. | MR | Zbl
.[8] Selected Topics in the Classical Theory of Functions of a Complex Variable. Holt, Rinehart and Winston, New York, 1962. | MR
.[9] Diffusion Processes and Their Sample Paths. Springer, Berlin, 1974 (second printing, corrected, Die Grundlehren der mathematischen Wissenschaften, Band 125). | MR | Zbl
and[10] Un subconjunto particular de la variedad de representaciones n-dimensional Rn(Gg). Thesis, Centro de Investigación en Matemáticas, A.C., 2006.
.[11] Brownian Motion and Stochastic Calculus. Springer, New York, 1988. | MR | Zbl
and .[12] Dynamics of geodesic and horocycle flows on surfaces of constant negative curvature. Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces (Trieste, 1989) 71-91. Oxford Sci. Publ., Oxford Univ. Press, New York, 1991. | MR | Zbl
.[13] Brownian motion and harmonic functions on rotationally symmetric manifolds. Ann. Probab. 14 (1986) 793-801. | MR | Zbl
.[14] Measures on hyperbolic surface laminations. Ergodic Theory Dynam. Systems 26 (2006) 847-867. | MR | Zbl
.[15] Continuous Martingales and Brownian Motion, 3rd edition. Springer, Berlin, 1999. | MR | Zbl
and .[16] Coupling, Stationarity, and Regeneration. Springer, New York, 2000. | MR | Zbl
.[17] Ergodic Theory and Semisimple Groups. Birkhäuser, Basel, 1984. | MR | Zbl
.Cité par Sources :