Invariance principles for spatial multitype Galton-Watson trees
Annales de l'I.H.P. Probabilités et statistiques, Volume 44 (2008) no. 6, p. 1128-1161

We prove that critical multitype Galton-Watson trees converge after rescaling to the brownian continuum random tree, under the hypothesis that the offspring distribution is irreducible and has finite covariance matrices. Our study relies on an ancestral decomposition for marked multitype trees, and an induction on the number of types. We then couple the genealogical structure with a spatial motion, whose step distribution may depend on the structure of the tree in a local way, and show that the resulting discrete spatial trees converge once suitably rescaled to the brownian snake, under some moment assumptions.

Nous montrons que les arbres de Galton-Watson multitypes, dont les lois de reproduction sont irrductibles et de matrices de covariance finies, admettent pour limite d'chelle l'arbre continu brownien. La clef de notre tude est une dcomposition ancestrale pour les arbres multitypes marqus, et une mthode par rcurrence sur le nombre de types. Nous couplons ensuite la structure gnalogique avec des dplacements spaciaux, dont la loi de saut peut dpendre localement de la structure de l'arbre, et nous montrons que les arbres spatiaux obtenus convergent vers le serpent brownien, sous certaines hypothses de moments.

DOI : https://doi.org/10.1214/07-AIHP157
Classification:  60J80,  60F17
Keywords: multitype Galton-Watson tree, discrete snake, invariance principle, brownian tree, brownian snake
@article{AIHPB_2008__44_6_1128_0,
     author = {Miermont, Gr\'egory},
     title = {Invariance principles for spatial multitype Galton-Watson trees},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {44},
     number = {6},
     year = {2008},
     pages = {1128-1161},
     doi = {10.1214/07-AIHP157},
     zbl = {1178.60058},
     mrnumber = {2469338},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2008__44_6_1128_0}
}
Miermont, Grégory. Invariance principles for spatial multitype Galton-Watson trees. Annales de l'I.H.P. Probabilités et statistiques, Volume 44 (2008) no. 6, pp. 1128-1161. doi : 10.1214/07-AIHP157. http://www.numdam.org/item/AIHPB_2008__44_6_1128_0/

[1] D. J. Aldous. The continuum random tree. III. Ann. Probab. 21 (1993) 248-289. | MR 1207226 | Zbl 0791.60009

[2] K. B. Athreya and P. E. Ney. Branching Processes. Springer, New York, 1972. (Die Grundlehren der mathematischen Wissenschaften, Band 196.) | MR 373040 | Zbl 0259.60002

[3] T. Duquesne. A limit theorem for the contour process of conditioned Galton-Watson trees. Ann. Probab. 31 (2003) 996-1027. | MR 1964956 | Zbl 1025.60017

[4] T. Duquesne and J.-F. Le Gall. Random trees, Lévy processes and spatial branching processes. Astérisque 281 (2002) vi + 147. | MR 1954248 | Zbl 1037.60074

[5] T. Duquesne and J.-F. Le Gall. Probabilistic and fractal aspects of Lévy trees. Probab. Theory Related Fields 131 (2005) 553-603. | MR 2147221 | Zbl 1070.60076

[6] W. Feller. An Introduction to Probability Theory and Its Applications Vol. II, 2nd edition. Wiley, New York, 1971. | MR 270403 | Zbl 0219.60003

[7] T. E. Harris. The Theory of Branching Processes. Dover Phoenix Editions. Dover Publications Inc., Mineola, NY, 2002. (Corrected reprint of the 1963 original. Springer, Berlin) | MR 163361 | Zbl 1037.60001

[8] P. Jagers. General branching processes as Markov fields. Stochastic Process. Appl. 32 (1989) 183-212. | MR 1014449 | Zbl 0678.92009

[9] S. Janson. Limit theorems for triangular urn schemes. Probab. Theory Related Fields 134 (2005) 417-452. | MR 2226887 | Zbl 1112.60012

[10] S. Janson and J.-F. Marckert. Convergence of discrete snakes. J. Theoret. Probab. 18 (2005) 615-645. | MR 2167644 | Zbl 1084.60049

[11] T. Kurtz, R. Lyons, R. Pemantle and Y. Peres. A conceptual proof of the Kesten-Stigum theorem for multi-type branching processes. In Classical and Modern Branching Processes (Minneapolis, MN, 1994) 181-185. IMA Vol. Math. Appl. 84. Springer, New York, 1997. | MR 1601737 | Zbl 0868.60068

[12] J.-F. Le Gall. Spatial Branching Processes, Random Snakes and Partial Differential Equations. Birkhäuser, Basel, 1999. | MR 1714707 | Zbl 0938.60003

[13] J.-F. Marckert and G. Miermont. Invariance principles for random bipartite planar maps. Ann. Probab. 35 (2007) 1642-1705. | MR 2349571 | Zbl pre05201525

[14] G. Miermont. An invariance principle for random planar maps. In Fourth Colloquium on Mathematics and Computer Sciences CMCS'06, Discrete Math. Theor. Comput. Sci. Proc., AG 39-58 (electronic). Nancy, 2006. | MR 2509622

[15] V. V. Petrov. Limit Theorems of Probability Theory. The Clarendon Press Oxford University Press, New York, 1995. | MR 1353441 | Zbl 0826.60001

[16] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd edition. Springer, Berlin, 1999. | MR 1725357 | Zbl 0917.60006

[17] E. Seneta. Nonnegative Matrices and Markov Chains, 2nd edition. Springer, New York, 1981. | MR 719544 | Zbl 0471.60001

[18] D. W. Stroock. Probability Theory, an Analytic View. Cambridge Univ. Press, 1993. | MR 1267569 | Zbl 0925.60004

[19] V. A. Vatutin and E. E. Dyakonova. The survival probability of a critical multitype Galton-Watson branching process. J. Math. Sci. (New York) 106 (2001) 2752-2759. | MR 1878742 | Zbl 0999.60081

[20] L. M. Wu. Moderate deviations of dependent random variables related to CLT. Ann. Probab. 23 (1995) 420-445. | MR 1330777 | Zbl 0828.60017