Dans cet article, nous considérons une équation différentielle stochastique multidimensionnelle dirigée par un mouvement brownien fractionnaire d'indice de Hurst H>1/3. Nous développons E[f(Xt)] par rapport à t, où on note X la solution de l'EDS et où f:ℝn→ℝ est une fonction régulière. Par rapport à F. Baudoin et L. Coutin, Stochastic Process. Appl. 117 (2007) 550-574, où le même problème est étudié, nous améliorons leur résultat dans trois directions différentes: nous traîtons le cas d'une équation avec dérive, nous paramétrons notre développement à l'aide d'arbres, ce qui le rend plus facile à utiliser, et nous proposons un contrôle plus fin du reste quand H>1/2.
In this article, we consider an n-dimensional stochastic differential equation driven by a fractional brownian motion with Hurst parameter H>1/3. We derive an expansion for E[f(Xt)] in terms of t, where X denotes the solution to the SDE and f:ℝn→ℝ is a regular function. Comparing to F. Baudoin and L. Coutin, Stochastic Process. Appl. 117 (2007) 550-574, where the same problem is studied, we provide an improvement in three different directions: we are able to consider equations with drift, we parametrize our expansion with trees, which makes it easier to use, and we obtain a sharp estimate of the remainder for the case H>1/2.
Mots-clés : fractional brownian motion, stochastic differential equations, trees expansions
@article{AIHPB_2009__45_1_157_0, author = {Neuenkirch, A. and Nourdin, I. and R\"o{\ss}ler, A. and Tindel, S.}, title = {Trees and asymptotic expansions for fractional stochastic differential equations}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {157--174}, publisher = {Gauthier-Villars}, volume = {45}, number = {1}, year = {2009}, doi = {10.1214/07-AIHP159}, mrnumber = {2500233}, zbl = {1172.60017}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/07-AIHP159/} }
TY - JOUR AU - Neuenkirch, A. AU - Nourdin, I. AU - Rößler, A. AU - Tindel, S. TI - Trees and asymptotic expansions for fractional stochastic differential equations JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2009 SP - 157 EP - 174 VL - 45 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/07-AIHP159/ DO - 10.1214/07-AIHP159 LA - en ID - AIHPB_2009__45_1_157_0 ER -
%0 Journal Article %A Neuenkirch, A. %A Nourdin, I. %A Rößler, A. %A Tindel, S. %T Trees and asymptotic expansions for fractional stochastic differential equations %J Annales de l'I.H.P. Probabilités et statistiques %D 2009 %P 157-174 %V 45 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/07-AIHP159/ %R 10.1214/07-AIHP159 %G en %F AIHPB_2009__45_1_157_0
Neuenkirch, A.; Nourdin, I.; Rößler, A.; Tindel, S. Trees and asymptotic expansions for fractional stochastic differential equations. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) no. 1, pp. 157-174. doi : 10.1214/07-AIHP159. http://archive.numdam.org/articles/10.1214/07-AIHP159/
[1] Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29 (2001) 766-801. | MR | Zbl
, and .[2] Operators associated with a stochastic differential equation driven by fractional Brownian motions. Stochastic. Process. Appl. 117 (2007) 550-574. | MR | Zbl
and .[3] Flot et séries de Taylor stochastiques. Probab. Theory Related Fields 81 (1989) 29-77. | MR | Zbl
.[4] On polynomial chaos and integrability. Probab. Math. Statist. 3 (1984) 191-203. | MR | Zbl
.[5] Stochastic rough path analysis and fractional Brownian motion. Probab. Theory Related Fields 122 (2002) 108-140. | MR | Zbl
and .[6] Numerical Solutions of Stochastic Differential Equations, 3rd edition. Springer, Berlin, 1999. | MR | Zbl
and .[7] System Control and Rough Paths. Oxford Univ. Press, 2002. | MR | Zbl
and .[8] Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998) 215-310. | MR | Zbl
.[9] Controlling rough paths. J. Funct. Anal. 216 (2004) 86-140. | MR | Zbl
.[10] Differential equations driven by Hölder continuous functions of order greater than 1/2. Proceedings of Abel Symposium. To appear, 2007. | MR | Zbl
and .[11] Reconstruction of fractional diffusions. In preparation, 2007.
.[12] Delay equations driven by rough paths. Preprint, 2007. | MR
, and .[13] On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion. Statist. Probab. Lett. 76 (2006) 907-912. | MR | Zbl
and .[14] Correcting Newton-Cotes integrals by Lévy areas. Bernoulli 13 (2007) 695-711. | MR | Zbl
and .[15] Some linear fractional stochastic equations. Stochastics 78 (2006) 51-65. | MR | Zbl
and .[16] The Malliavin Calculus and Related Topics, 2nd edition. Springer, Berlin, 2006. | MR | Zbl
.[17] Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002) 55-81. | MR | Zbl
and .[18] Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion. Preprint, Barcelona, 2006. | MR
and .[19] Integration questions related to fractional Brownian motion. Probab. Theory Related Fields 118 (2000) 251-291. | MR | Zbl
and .[20] On a Taylor formula for a class of Itô processes. Probab. Math. Statist. 2 (1982) 37-51. | MR | Zbl
and .[21] Stochastic Taylor expansions for the expectation of functionals of diffusion processes. Stochastic Anal. Appl. 22 (2004) 1553-1576. | MR | Zbl
.[22] Rooted tree analysis for order conditions of stochastic Runge-Kutta methods for the weak approximation of stochastic differential equations. Stochastic Anal. Appl. 24 (2006) 97-134. | MR | Zbl
.[23] Stieltjes integrals of Hölder continuous functions with applications to fractional Brownian motion. J. Statist. Phys. 100 (2000) 1049-1069. | MR | Zbl
.[24] Integration with respect to fractal functions and stochastic calculus I. Probab. Theory Related Fields 111 (1998) 333-374. | MR | Zbl
.Cité par Sources :