Duality of chordal SLE, II
Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) no. 3, pp. 740-759.

Nous améliorons des résultats précédemment obtenus concernant les propriétés géométriques des processus , que nous utilisons ensuite pour étudier la propriété dite de dualité des processus SLE. Nous prouvons que pour κ∈(4, 8), la frontière de l'enveloppe d'un SLE(κ) chordal standard arrêté quand il disconnecte un point fixe x∈ℝ\{0} de l'infini est une courbe issue d'un point aléatoire. Nous obtenons ainsi une description de la frontière de l'enveloppe d'un SLE(κ) pour κ>4. Finalement, nous démontrons que pour κ>4, dans de nombreux cas, la courbe de processus généralisés (par exemple dans une bande) se termine presque sûrement en un point unique.

We improve the geometric properties of processes derived in an earlier paper, which are then used to obtain more results about the duality of SLE. We find that for κ∈(4, 8), the boundary of a standard chordal SLE(κ) hull stopped on swallowing a fixed x∈ℝ∖{0} is the image of some trace started from a random point. Using this fact together with a similar proposition in the case that κ≥8, we obtain a description of the boundary of a standard chordal SLE(κ) hull for κ>4, at a finite stopping time. Finally, we prove that for κ>4, in many cases, a chordal or strip trace a.s. ends at a single point.

DOI : https://doi.org/10.1214/09-AIHP340
Classification : 30C20,  60H05
Mots clés : SLE, duality, coupling technique
@article{AIHPB_2010__46_3_740_0,
     author = {Zhan, Dapeng},
     title = {Duality of chordal SLE, II},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {740--759},
     publisher = {Gauthier-Villars},
     volume = {46},
     number = {3},
     year = {2010},
     doi = {10.1214/09-AIHP340},
     zbl = {1200.60071},
     mrnumber = {2682265},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1214/09-AIHP340/}
}
Zhan, Dapeng. Duality of chordal SLE, II. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) no. 3, pp. 740-759. doi : 10.1214/09-AIHP340. http://archive.numdam.org/articles/10.1214/09-AIHP340/

[1] L. V. Ahlfors. Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill, New York, 1973. | MR 357743 | Zbl 0272.30012

[2] V. Beffara. Hausdorff dimensions for SLE6. Ann. Probab. 32 (2004) 2606-2629. | MR 2078552 | Zbl 1055.60036

[3] V. Beffara. The dimension of the SLE curves. Ann. Probab. 36 (2008) 1421-1452. | MR 2435854 | Zbl 1165.60007

[4] J. Dubédat. Duality of Schramm-Loewner evolutions. Ann. Sci. École Norm. Sup. (4) 42 (2009) 697-724. | Numdam | MR 2571956 | Zbl 1205.60147

[5] G. F. Lawler, O. Schramm and W. Werner. Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32 (2004) 939-995. | MR 2044671 | Zbl 1126.82011

[6] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Springer, Berlin, 1991. | MR 1083357 | Zbl 0917.60006

[7] S. Rohde and O. Schramm. Basic properties of SLE. Ann. Math. 161 (2005) 883-924. | MR 2153402 | Zbl 1081.60069

[8] O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118 (2000) 221-288. | MR 1776084 | Zbl 0968.60093

[9] D. Zhan. Duality of chordal SLE. Inven. Math. 174 (2008) 309-353. | MR 2439609 | Zbl 1158.60047

[10] D. Zhan. The scaling limits of planar LERW in finitely connected domains. Ann. Probab. 36 (2008) 467-529. | MR 2393989 | Zbl 1153.60057

[11] D. Zhan. Reversibility of chordal SLE. Ann. Probab. 36 (2008) 1472-1494. | MR 2435856 | Zbl 1157.60051