Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains
Annales de l'I.H.P. Probabilités et statistiques, Volume 46 (2010) no. 3, p. 796-821

We consider a large class of piecewise expanding maps T of [0, 1] with a neutral fixed point, and their associated Markov chains Yi whose transition kernel is the Perron-Frobenius operator of T with respect to the absolutely continuous invariant probability measure. We give a large class of unbounded functions f for which the partial sums of fTi satisfy both a central limit theorem and a bounded law of the iterated logarithm. For the same class, we prove that the partial sums of f(Yi) satisfy a strong invariance principle. When the class is larger, so that the partial sums of fTi may belong to the domain of normal attraction of a stable law of index p∈(1, 2), we show that the almost sure rates of convergence in the strong law of large numbers are the same as in the corresponding i.i.d. case.

On considère une classe de transformations dilatantes T de [0, 1] ayant un point fixe neutre, ainsi que les chaînes de Markov associées Yi, dont le noyau de transition est l'opérateur de Perron-Frobenius de T par rapport à l'unique mesure de probabilité T-invariante possédant une densité. On montre une loi du logarithme itéré bornée pour les sommes partielles de fTi, lorsque f appartient à une classe de fonctions non bornées. Pour la même classe, on montre un principe d'invariance fort pour les sommes partielles de f(Yi). Lorsqu'on élargit la classe de fonctions, jusqu'à inclure des fonctions f pour lesquelles les sommes partielles de fTi appartiennent au domaine d'attraction normal d'une loi stable d'indice p∈(1, 2), on montre que les vitesses de convergence dans la loi forte des grands nombres sont les même que dans le cas i.i.d. correspondant.

DOI : https://doi.org/10.1214/09-AIHP343
Classification:  37E05,  37C30,  60F15
Keywords: intermittency, almost sure convergence, law of the iterated logarithm, strong invariance principle
@article{AIHPB_2010__46_3_796_0,
     author = {Dedecker, J. and Gou\"ezel, S. and Merlev\`ede, F.},
     title = {Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {46},
     number = {3},
     year = {2010},
     pages = {796-821},
     doi = {10.1214/09-AIHP343},
     zbl = {1206.60032},
     mrnumber = {2682267},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2010__46_3_796_0}
}
Dedecker, J.; Gouëzel, S.; Merlevède, F. Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains. Annales de l'I.H.P. Probabilités et statistiques, Volume 46 (2010) no. 3, pp. 796-821. doi : 10.1214/09-AIHP343. http://www.numdam.org/item/AIHPB_2010__46_3_796_0/

[1] E. Berger. An almost sure invariance principle for stationary ergodic sequences of Banach space valued random variables. Probab. Theory Related Fields 84 (1990) 161-201. | MR 1030726 | Zbl 0695.60041

[2] J. Dedecker and F. Merlevède. Convergence rates in the law of large numbers for Banach-valued dependent variables. Teor. Veroyatn. Primen. 52 (2007) 562-587. | MR 2743029 | Zbl 1158.60009

[3] J. Dedecker and C. Prieur. Some unbounded functions of intermittent maps for which the central limit theorem holds. ALEA Lat. Am. J. Probab. Math. Stat. 5 (2009) 29-45. | MR 2475605 | Zbl 1160.37354

[4] J. Dedecker and E. Rio. On mean central limit theorems for stationary sequences. Ann. Inst. H. Poincaré Probab. Statist. 44 (2008) 693-726. | Numdam | MR 2446294 | Zbl 1187.60015

[5] C.-G. Esseen and S. Janson. On moment conditions for normed sums of independent variables and martingale differences. Stochastic Process. Appl. 19 (1985) 173-182. | MR 780729 | Zbl 0554.60050

[6] W. Feller. An Introduction to Probability Theory and Its Applications. Vol. II. Wiley, New York-London-Sydney, 1966. | MR 210154 | Zbl 0138.10207

[7] W. Feller. An extension of the law of the iterated logarithm to variables without variance. J. Math. Mech. 18 (1968) 343-355. | MR 233399 | Zbl 0254.60016

[8] M. I. Gordin. Abstracts of communication, T.1:A-K. In International Conference on Probability Theory, Vilnius, 1973.

[9] S. Gouëzel. Central limit theorem and stable laws for intermittent maps. Probab. Theory Related Fields 128 (2004) 82-122. | MR 2027296 | Zbl 1038.37007

[10] S. Gouëzel. Sharp polynomial estimates for the decay of correlations. Israel J. Math. 139 (2004) 29-65. | MR 2041223 | Zbl 1070.37003

[11] S. Gouëzel. Vitesse de décorrélation et théorèmes limites pour les applications non uniformément dilatantes. Thèse 7526, l'Université Paris Sud, 2004.

[12] S. Gouëzel. A Borel-Cantelli lemma for intermittent interval maps. Nonlinearity 20 (2007) 1491-1497. | MR 2327135 | Zbl 1120.34004

[13] H. Hennion and L. Hervé. Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness. Lecture Notes in Math. 1766. Springer, Berlin, 2001. | MR 1862393 | Zbl 0983.60005

[14] C. C. Heyde. A note concerning behaviour of iterated logarithm type. Proc. Amer. Math. Soc. 23 (1969) 85-90. | MR 251772 | Zbl 0185.46901

[15] F. Hofbauer and G. Keller. Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z. 180 (1982) 119-140. | MR 656227 | Zbl 0485.28016

[16] C. Liverani, B. Saussol and S. Vaienti. A probabilistic approach to intermittency. Ergodic Theory Dynam. Systems 19 (1999) 671-685. | MR 1695915 | Zbl 0988.37035

[17] I. Melbourne and M. Nicol. Almost sure invariance principle for nonuniformly hyperbolic systems. Commun. Math. Phys. 260 (2005) 131-146. | MR 2175992 | Zbl 1084.37024

[18] F. Merlevède. On a maximal inequality for strongly mixing random variables in Hilbert spaces. Application to the compact law of the iterated logarithm. Publ. Inst. Stat. Univ. Paris 12 (2008) 47-60. | MR 2435040

[19] W. Philipp and W. F. Stout. Almost Sure Invariance Principle for Partial Sums of Weakly Dependent Random Variables. Mem. Amer. Math. Soc. 161. Amer. Math. Soc., Providence, RI, 1975. | Zbl 0361.60007

[20] I. Pinelis. Optimum bounds for the distributions of martingales in Banach spaces. Ann. Probab. 22 (1994) 1679-1706. | MR 1331198 | Zbl 0836.60015

[21] Y. Pomeau and P. Manneville. Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74 (1980) 189-197. | MR 576270 | Zbl 0578.76059

[22] E. Rio. The functional law of the iterated logarithm for stationary strongly mixing sequences. Ann. Probab. 23 (1995) 1188-1203. | MR 1349167 | Zbl 0833.60024

[23] E. Rio. Théorie asymptotique des processus aléatoires faiblement dépendants. Mathématiques et applications de la SMAI 31. Springer, Berlin, 2000. | MR 2117923 | Zbl 0944.60008

[24] M. Rosenblatt. A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 42 (1956) 43-47. | MR 74711 | Zbl 0070.13804

[25] O. Sarig. Subexponential decay of correlations. Invent. Math. 150 (2002) 629-653. | MR 1946554 | Zbl 1042.37005

[26] W. F. Stout. Almost Sure Convergence. Academic Press, New-York, 1974. | MR 455094 | Zbl 0321.60022

[27] D. Volný and P. Samek. On the invariance principle and the law of iterated logarithm for stationary processes. In Mathematical Physics and Stochastic Analysis 424-438. World Scientific., River Edge, 2000. | MR 1893125 | Zbl 0974.60013

[28] L.-S. Young. Recurrence times and rates of mixing. Israel J. Math. 110 (1999) 153-188. | MR 1750438 | Zbl 0983.37005

[29] R. Zweimüller. Ergodic structure and invariant densities of non-Markovian interval maps with indifferent fixed points. Nonlinearity 11 (1998) 1263-1276. | MR 1644385 | Zbl 0922.58039