Nous considérons l'ensemble des courbes {γα, N: α∈(0, 1], N∈ℕ} obtenues en interpolant les valeurs des sommes thêta normalisées N-1/2∑n=0N'-1exp(πin2α), 0≤N'<N. Nous démontrons l'existence de la limite des distributions fini-dimensionnelles de telles courbes quand N→∞, où α est distribué selon une quelconque mesure de probabilité λ, absolument continue par rapport à la mesure de Lebesgue sur [0, 1]. Notre théorème principal généralise un résultat de Marklof [Duke Math. J. 97 (1999) 127-153] et de Jurkat et van Horne [Duke Math. J. 48 (1981) 873-885, Michigan Math. J. 29 (1982) 65-77]. Notre démonstration se base sur l'analyse des structures géométriques de telles courbes, qui présentent des motifs à spirale (curlicues) à différentes échelles. Nous exploitons une procédure de renormalisation construite par le développement de α en fractions continues avec quotients partiels pairs et un théorème de renouvellement pour les dénominateurs de tels développements en fractions continues.
We consider the ensemble of curves {γα, N: α∈(0, 1], N∈ℕ} obtained by linearly interpolating the values of the normalized theta sum N-1/2∑n=0N'-1exp(πin2α), 0≤N'<N. We prove the existence of limiting finite-dimensional distributions for such curves as N→∞, when α is distributed according to any probability measure λ, absolutely continuous w.r.t. the Lebesgue measure on [0, 1]. Our Main Theorem generalizes a result by Marklof [Duke Math. J. 97 (1999) 127-153] and Jurkat and van Horne [Duke Math. J. 48 (1981) 873-885, Michigan Math. J. 29 (1982) 65-77]. Our proof relies on the analysis of the geometric structure of such curves, which exhibit spiral-like patterns (curlicues) at different scales. We exploit a renormalization procedure constructed by means of the continued fraction expansion of α with even partial quotients and a renewal-type limit theorem for the denominators of such continued fraction expansions.
Mots-clés : theta sums, curlicues, limiting distribution, continued fractions with even partial quotients, renewal-type limit theorems
@article{AIHPB_2011__47_2_466_0, author = {Cellarosi, Francesco}, title = {Limiting curlicue measures for theta sums}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {466--497}, publisher = {Gauthier-Villars}, volume = {47}, number = {2}, year = {2011}, doi = {10.1214/10-AIHP361}, mrnumber = {2814419}, zbl = {1233.37026}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/10-AIHP361/} }
TY - JOUR AU - Cellarosi, Francesco TI - Limiting curlicue measures for theta sums JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 466 EP - 497 VL - 47 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/10-AIHP361/ DO - 10.1214/10-AIHP361 LA - en ID - AIHPB_2011__47_2_466_0 ER -
%0 Journal Article %A Cellarosi, Francesco %T Limiting curlicue measures for theta sums %J Annales de l'I.H.P. Probabilités et statistiques %D 2011 %P 466-497 %V 47 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/10-AIHP361/ %R 10.1214/10-AIHP361 %G en %F AIHPB_2011__47_2_466_0
Cellarosi, Francesco. Limiting curlicue measures for theta sums. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 2, pp. 466-497. doi : 10.1214/10-AIHP361. http://archive.numdam.org/articles/10.1214/10-AIHP361/
[1] Random f-expansions. Ann. Probab. 14 (1986) 1037-1057. | MR | Zbl
.[2] An Introduction to Infinite Ergodic Theory. Mathematical Surveys and Monographs 50. Amer. Math. Soc., Providence, RI, 1997. | MR | Zbl
.[3] Renormalisation of curlicues. Nonlinearity 1 (1988) 1-26. | MR | Zbl
and .[4] Renewal-type limit theorem for continued fractions with even partial quotients. Ergodic Theory Dynam. Systems 29 (2009) 1451-1478. | MR | Zbl
.[5] Disorder, renormalizability, theta functions and Cornu spirals. Phys. D 26 (1987) 295-310. | MR | Zbl
and .[6] The approximate functional formula for the theta function and Diophantine Gauss sums. Trans. Amer. Math. Soc. 350 (1998) 615-641. | MR | Zbl
and .[7] Uniform distribution modulo one: A geometrical viewpoint. J. Reine Angew. Math. 329 (1981) 143-153. | MR | Zbl
and .[8] Renormalization of exponential sums and matrix cocycles. In Séminaire: Équations aux Dérivées Partielles, 2004-2005 XVI 12. École Polytech., Palaiseau, 2005. | Numdam | MR
and .[9] Asymptotic expansions of finite theta series. Acta Arith. 32 (1977) 129-146. | MR | Zbl
, and .[10] Equidistribution of nilflows and applications to theta sums. Ergodic Theory Dynam. Systems 26 (2006) 409-433. | MR | Zbl
and .[11] Some problems of Diophantine approximation. Acta Math. 37 (1914) 193-239. | JFM | MR
and .[12] The proof of the central limit theorem for theta sums. Duke Math. J. 48 (1981) 873-885. | MR | Zbl
and .[13] On the central limit theorem for theta series. Michigan Math. J. 29 (1982) 65-77. | MR | Zbl
and .[14] The uniform central limit theorem for theta sums. Duke Math. J. 50 (1983) 649-666. | MR | Zbl
and .[15] Continued Fractions. Chicago Univ. Press, Chicago, 1964. | Zbl
.[16] The theta group and the continued fraction expansion with even partial quotients. Geom. Dedicata 59 (1996) 293-333. | MR | Zbl
and .[17] Limit theorems for theta sums. Duke Math. J. 97 (1999) 127-153. | MR | Zbl
.[18] Entropie, dimension et thermodynamique des courbes planes. In Seminar on Number Theory, Paris 1981-82 (Paris, 1981/1982). Progr. Math. 38 153-177. Birkhäuser, Boston, MA, 1983. | MR | Zbl
.[19] Entropy of curves and uniform distribution. In Topics in Classical Number Theory, Vol. I, II (Budapest, 1981). Colloq. Math. Soc. János Bolyai 34 1051-1067. North-Holland, Amsterdam, 1984. | MR | Zbl
.[20] On the thermodynamics of curves and other curlicues. In Miniconference on Geometry and Physics (Canberra, 1989). Proc. Centre Math. Anal. Austral. Nat. Univ. 22 82-109. Austral. Nat. Univ., Canberra, 1989. | MR | Zbl
and .[21] The approximate functional formula for the theta function. J. London Math. Soc. 1 (1926) 68-72. Available at http://jlms.oxfordjournals.org/cgi/reprint/s1-1/2/68. | JFM
.[22] On mixing sequences of sets. Acta Math. Acad. Sci. Hungar. 9 (1958) 215-228. | MR | Zbl
.[23] Continued Fractions. World Scientific, River Edge, NJ, 1992. | MR | Zbl
and .[24] Continued fractions with odd and even partial quotients. Arbeitsber. Math. Inst. Univ. Salzburg 4 (1982) 59-70. | Zbl
.[25] On the approximation by continues fractions with odd and even partial quotients. Arbeitsber. Math. Inst. Univ. Salzburg 1,2 (1984) 105-114.
.[26] Ergodic Theory of Fibred Systems and Metric Number Theory. Clarendon Press, Oxford Univ. Press, New York, 1995. | MR | Zbl
.[27] Topics in Ergodic Theory. Princeton Mathematical Series 44. Princeton Univ. Press, Princeton, NJ, 1994. | MR | Zbl
.[28] Limit theorem for trigonometric sums. Theory of curlicues. Russian Math. Surveys 63 (2008) 1023-1029. | MR | Zbl
.[29] Renewal-type limit theorem for the Gauss map and continued fractions. Ergodic Theory Dynam. Systems 28 (2008) 643-655. | MR | Zbl
and .[30] Symbolic coding for linear trajectories in the regular octagon. Preprint. Available at arXiv:0905.0871v1.
and .[31] On the statistical properties of elements of continued fractions. Dokl. Math. 79 (2009) 87-89. | MR
.[32] The approximate functional formula for the theta function. J. London Mat. Soc. 1,2 (2009) 177-180. Available at http://jlms.oxfordjournals.org/cgi/reprint/s1-2/3/177-a. | JFM
.Cité par Sources :