A Ciesielski-Taylor type identity for positive self-similar Markov processes
Annales de l'I.H.P. Probabilités et statistiques, Volume 47 (2011) no. 3, p. 917-928

The aim of this note is to give a straightforward proof of a general version of the Ciesielski-Taylor identity for positive self-similar Markov processes of the spectrally negative type which umbrellas all previously known Ciesielski-Taylor identities within the latter class. The approach makes use of three fundamental features. Firstly, a new transformation which maps a subset of the family of Laplace exponents of spectrally negative Lévy processes into itself. Secondly, some classical features of fluctuation theory for spectrally negative Lévy processes (see, e.g., [In Séminaire de Probabalités XXXVIII (2005) 16-29 Springer]) as well as more recent fluctuation identities for positive self-similar Markov processes found in [Ann. Inst. H. Poincaré Probab. Statist. 45 (2009) 667-684].

L'objectif principal de ce papier est de donner une preuve d'une version générale de l'identité de Ciesielski-Taylor pour la famille de processus positifs auto-similaires markoviens de type spectralement négatif, ce qui nous permet d'unifier l'ensemble des résultats déjà connus sur ce sujet. Notre preuve s'appuie sur trois concepts importants. Tout d'abord, nous introduisons une famille de transformations qui associe l'ensemble des exposants de Laplace de processus de Lévy spectralement négatifs à lui-même. Ensuite, nous combinons des résultats empruntés à la théorie des fluctuations des processus de Lévy spectralement négatifs (voir e.g., [In Séminaire de Probabalités XXXVIII (2005) 16-29 Springer]) et à celles des processus positifs auto-similaires markoviens spectralement négatifs élaborées plus récemment par [Ann. Inst. H. Poincaré Probab. Statist. 45 (2009) 667-684].

DOI : https://doi.org/10.1214/10-AIHP398
Classification:  60G18,  60G51,  60B52
Keywords: positive self-similar Markov process, Ciesielski-Taylor identity, spectrally negative Lévy process, Bessel processes, stable processes, lamperti-stable processes
@article{AIHPB_2011__47_3_917_0,
     author = {Kyprianou, A. E. and Patie, P.},
     title = {A Ciesielski-Taylor type identity for positive self-similar Markov processes},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {47},
     number = {3},
     year = {2011},
     pages = {917-928},
     doi = {10.1214/10-AIHP398},
     zbl = {1231.60031},
     mrnumber = {2848004},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2011__47_3_917_0}
}
Kyprianou, A. E.; Patie, P. A Ciesielski-Taylor type identity for positive self-similar Markov processes. Annales de l'I.H.P. Probabilités et statistiques, Volume 47 (2011) no. 3, pp. 917-928. doi : 10.1214/10-AIHP398. http://www.numdam.org/item/AIHPB_2011__47_3_917_0/

[1] J. Bertoin. An extension of Pitman's theorem for spectrally positive Lévy processes. Ann. Probab. 20 (1992) 1464-1483. | MR 1175272 | Zbl 0760.60068

[2] J. Bertoin. Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. | MR 1406564 | Zbl 0938.60005

[3] J. Bertoin and M. Yor. The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes. Potential Anal. 17 (2002) 389-400. | MR 1918243 | Zbl 1004.60046

[4] P. Biane. Comparaison entre temps d'atteinte et temps de séjour de certaines diffusions réelles. In Séminaire de probabilités, XIX, 1983/84 291-296. Lecture Notes in Math. 1123. Springer, Berlin, 1985. | Numdam | MR 889490 | Zbl 0562.60085

[5] M. E. Caballero and L. Chaumont. Conditioned stable Lévy processes and the Lamperti representation. J. Appl. Probab. 43 (2006) 967-983. | MR 2274630 | Zbl 1133.60316

[6] M. E. Caballero and L. Chaumont. Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes. Ann. Probab. 34 (2006) 1012-1034. | MR 2243877 | Zbl 1098.60038

[7] Ph. Carmona, F. Petit and M. Yor. Beta-gamma random variables and intertwining relations between certain Markov processes. Rev. Mat. Iberoamericana 14 (1998) 311-368. | MR 1654531 | Zbl 0919.60074

[8] T. Chan, A. E. Kyprianou and M. Savov. Smoothness of scale functions for spectrally negative Lévy processes. Probab. Theory and Related fields (2010). To appear. | MR 2824871 | Zbl pre05950545

[9] L. Chaumont, A. E. Kyprianou and J. C. Pardo. Some explicit identities associated with positive self-similar Markov processes. Stochastic Process. Appl. 119 (2009) 980-1000. | MR 2499867 | Zbl 1170.60017

[10] Z. Ciesielski and S. J. Taylor. First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103 (1962) 434-450. | MR 143257 | Zbl 0121.13003

[11] P. J. Fitzsimmons. On the existence of recurrent extension of positive self-similar Markov processes. Electron. Comm. Probab. 11 (2006) 230-241. | MR 2266714 | Zbl 1110.60036

[12] R. K. Getoor and M. J. Sharpe. Excursions of Brownian motion and Bessel processes. Z. Wahrsch. Verw. Gebiete 47 (1979) 83-106. | MR 521534 | Zbl 0399.60074

[13] A. E. Kyprianou. Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin, 2006. | MR 2250061 | Zbl 1104.60001

[14] A. E. Kyprianou and Z. Palmowski. A martingale review of some fluctuation theory for spectrally negative Lévy processes. In Séminaire de Probabilités XXXVIII 16-29. Lecture Notes in Math. 1857. Springer, Berlin, 2005. | MR 2126964 | Zbl 1063.60071

[15] J. Lamperti. Semi-stable Markov processes. I. Z. Wahrsch. Verw. Gebiete 22 (1972) 205-225. | MR 307358 | Zbl 0274.60052

[16] N. N. Lebedev. Special Functions and Their Applications. Dover Publications, New York, 1972. | MR 350075 | Zbl 0271.33001

[17] P. Patie. Exponential functional of one-sided Lévy processes and self-similar continuous state branching processes with immigration. Bull. Sci. Math. 133 (2009) 355-382. | MR 2532690 | Zbl 1171.60009

[18] P. Patie. Infinite divisibility of solutions to some self-similar integro-differential equations and exponential functionals of Lévy processes. Ann. Inst. H. Poincaré Probab. Statist. 45 (2009) 667-684. | Numdam | MR 2548498 | Zbl 1180.31010

[19] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences 44. Springer, New York, 1983. | MR 710486 | Zbl 0516.47023

[20] V. Rivero. Recurrent extensions of self-similar Markov processes and Cramér's condition. Bernoulli 11 (2005) 471-509. | MR 2146891 | Zbl 1077.60055

[21] M. Yor. Une explication du théorème de Ciesielski-Taylor. Ann. Inst. H. Poincaré Probab. Statist. 27 (1991) 201-213. | Numdam | MR 1118934 | Zbl 0743.60080