Decay of covariances, uniqueness of ergodic component and scaling limit for a class of φ systems with non-convex potential
Annales de l'I.H.P. Probabilités et statistiques, Volume 48 (2012) no. 3, p. 819-853

We consider a gradient interface model on the lattice with interaction potential which is a non-convex perturbation of a convex potential. Using a technique which decouples the neighboring vertices into even and odd vertices, we show for a class of non-convex potentials: the uniqueness of ergodic component for φ-Gibbs measures, the decay of covariances, the scaling limit and the strict convexity of the surface tension.

Nous considérons un modèle d'interfaces de type gradient indexé par le réseau avec une interaction donnée par la pertubation non convexe d'un potentiel convexe. En utilisant une technique qui découple les sites pairs et impairs, nous démontrons pour une classe de potentiels non convexes l'unicité de la composante ergodique, de la mesure de Gibbs du gradient, la décroissance des covariances, la loi limite centrale et la stricte convexité de la tension superficielle.

DOI : https://doi.org/10.1214/11-AIHP437
Classification:  60K35,  82B24,  35J15
Keywords: effective non-convex gradient interface models, uniqueness of ergodic component, decay of covariances, scaling limit, surface tension
@article{AIHPB_2012__48_3_819_0,
     author = {Cotar, Codina and Deuschel, Jean-Dominique},
     title = {Decay of covariances, uniqueness of ergodic component and scaling limit for a class of $\nabla \phi $ systems with non-convex potential},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {48},
     number = {3},
     year = {2012},
     pages = {819-853},
     doi = {10.1214/11-AIHP437},
     zbl = {1247.60133},
     mrnumber = {2976565},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2012__48_3_819_0}
}
Cotar, Codina; Deuschel, Jean-Dominique. Decay of covariances, uniqueness of ergodic component and scaling limit for a class of $\nabla \phi $ systems with non-convex potential. Annales de l'I.H.P. Probabilités et statistiques, Volume 48 (2012) no. 3, pp. 819-853. doi : 10.1214/11-AIHP437. http://www.numdam.org/item/AIHPB_2012__48_3_819_0/

[1] S. Adams, R. Kotecký and S. Müller. Unpublished manuscript.

[2] M. Biskup and R. Kotecký. Phase coexistence of gradient Gibbs states. Probab. Theory Related Fields 139 (2007) 1-39. | MR 2322690 | Zbl 1120.82003

[3] M. Biskup and M. Spohn. Scaling limit for a class of gradient fields with non-convex potentials. Ann. Probab. 39 (2011) 224-251. | MR 2778801 | Zbl 1222.60076

[4] D. Boivin and Y. Derriennic. The ergodic theorem for additive cocycles of d or d . Ergodic Theory Dynam. Systems 11 (1991) 19-39. | MR 1101082 | Zbl 0723.60008

[5] H. J. Brascamp, J. L. Lebowitz and E. H. Lieb. The statistical mechanics of anharmonic lattices. In Proceedings of the 40th Session of the International Statistics Institute 393-404. 1975. | MR 676341 | Zbl 0357.60051

[6] D. Brydges. Lectures on the renormalization group. In Statistical Mechanics 7-93. S. Sheffield and T. Spencer (Eds). IAS/Park City Mathematics Ser. Amer. Math. Soc., Provodence, RI, 2009. | MR 2523458 | Zbl 1186.82033

[7] D. Brydges and H. T. Yau. Grad φ perturbations of massless Gaussian fields. Comm. Math. Phys. 129 (1990) 351-392. | MR 1048698 | Zbl 0705.60101

[8] C. Cotar, J. D. Deuschel and S. Müller. Strict convexity of the free energy for non-convex gradient models at moderate β. Comm. Math. Phys. 286 (2009) 359-376. | MR 2470934 | Zbl 1173.82010

[9] C. Cotar and C. Külske. Existence of random gradient states. Ann. Appl. Probab. 22 (2012) 1650-1692. | MR 2985173 | Zbl 1254.60095

[10] C. Cotar and C. Külske. Uniqueness of random gradient states. Unpublished manuscript.

[11] T. Delmotte and J. D. Deuschel. On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to φ interface model. Probab. Theory Related Fields 133 (2005) 358-390. | MR 2198017 | Zbl 1083.60082

[12] J. D. Deuschel. Algebraic L 2 decay of attractive critical processes on the lattice. Ann. Probab. 22 (1994) 264-283. | MR 1258877 | Zbl 0811.60089

[13] J. D. Deuschel. The random walk representation for interacting diffusion processes. In Interacting Stochastic Systems 377-393. Springer, Berlin, 2005. | MR 2118583 | Zbl 1111.82049

[14] J. D. Deuschel, G. Giacomin and D. Ioffe. Large deviations and concentration properties for φ interface models. Probab. Theory Related Fields 117 (2000) 49-111. | MR 1759509 | Zbl 0988.82018

[15] J. Fröhlich and C. Pfister. On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems. Comm. Math. Phys. 81 (1981) 277-298. | MR 632763

[16] J. Fröhlich, B. Simon and T. Spencer. Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys. 50 (1976) 79-95. | MR 421531

[17] J. Fröhlich and T. Spencer. The Kosterlitz-Thouless transition in two-dimensional Abelian spin systems and the Coulomb gas. Comm. Math. Phys. 81 (1981) 527-602. | MR 634447

[18] J. Fröhlich and T. Spencer. On the statistical mechanics of Coulomb and dipole gases. J. Stat. Phys. 24 (1981) 617-701. | MR 610687

[19] T. Funaki and H. Spohn. Motion by mean curvature from the Ginzburg-Landau φ interface model. Comm. Math. Phys. 185 (1997) 1-36. | MR 1463032 | Zbl 0884.58098

[20] T. Funaki. Stochastic interface models. In Lectures on Probability Theory and Statistics 102-274. Lect. Notes in Math. 1869. Springer, Berlin, 2005. | MR 2228384 | Zbl 1119.60081

[21] H.-O. Georgii. Gibbs Measures and Phase Transitions. De Gruyer, Berlin, 1988. | MR 956646 | Zbl 1225.60001

[22] G. Giacomin, S. Olla and H. Spohn. Equilibrium fluctuations for φ interface model. Ann. Probab. 29 (2001) 1138-1172. | MR 1872740 | Zbl 1017.60100

[23] B. Helffer and J. Sjöstrand. On the correlation for Kac-like models in the convex case. J. Stat. Phys. 74 (1994) 349-409. | MR 1257821 | Zbl 0946.35508

[24] S. Louhichi. Rosenthal's inequality for LPQD sequences. Statist. Probab. Lett. 42 (1999) 139-144. | MR 1680098 | Zbl 0931.60007

[25] A. Naddaf and T. Spencer. On homogenization and scaling limit of some gradient perturbations of a massless free field. Comm. Math. Phys. 183 (1997) 55-84. | MR 1461951 | Zbl 0871.35010

[26] S. Sheffield. Random Surfaces: Large Deviations Principles and Gradient Gibbs Measure Classifications. Asterisque 304. SMF, Paris, 2005. | MR 2251117 | Zbl 1104.60002

[27] Y. Velenik. Localization and delocalization of random interfaces. Probab. Surv. 3 (2006) 112-169. | MR 2216964 | Zbl 1189.82051