The rate of escape for random walks on polycyclic and metabelian groups
Annales de l'I.H.P. Probabilités et statistiques, Volume 49 (2013) no. 1, p. 270-287

We use subgroup distortion to determine the rate of escape of a simple random walk on a class of polycyclic groups, and we show that the rate of escape is invariant under changes of generating set for these groups. For metabelian groups, we define a stronger form of subgroup distortion which applies to non-finitely generated subgroups. Under this hypothesis, we compute the rate of escape for certain random walks on some abelian-by-cyclic groups via a comparison to the toppling of a dissipative abelian sandpile.

Nous utilisons la notion de distorsion des sous-groupes afin de déterminer la vitesse de fuite (sous linéaire) d'une marche aléatoire simple sur une classe de groupes polycycliques, et nous montrons que cette vitesse est invariante par changement de générateurs pour ces groupes. Pour les groupes métabéliens, nous définissons une forme plus forte de distorsion des sous-groupes qui s'applique à des sous-groupes non finiment engendrés. Sous cette hypothèse, nous calculons la vitesse de fuite pour certaines marches aléatoires sur certains groupes abélien par cyclique via l'intermédiaire d'une comparaison avec la chute d'un tas de sable abélien dissipatif.

DOI : https://doi.org/10.1214/11-AIHP455
Classification:  60B15,  20F65
Keywords: law of iterated logarithm, metabelian group, polycyclic group, random walk, rate of escape, abelian sandpile, solvable group, subgroup distortion
@article{AIHPB_2013__49_1_270_0,
     author = {Thompson, Russ},
     title = {The rate of escape for random walks on polycyclic and metabelian groups},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {49},
     number = {1},
     year = {2013},
     pages = {270-287},
     doi = {10.1214/11-AIHP455},
     zbl = {1274.60018},
     mrnumber = {3060157},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2013__49_1_270_0}
}
Thompson, Russ. The rate of escape for random walks on polycyclic and metabelian groups. Annales de l'I.H.P. Probabilités et statistiques, Volume 49 (2013) no. 1, pp. 270-287. doi : 10.1214/11-AIHP455. http://www.numdam.org/item/AIHPB_2013__49_1_270_0/

[1] T. Austin, A. Naor and Y. Peres. The wreath product of with has Hilbert compression exponent 2 3. Proc. Amer. Math. Soc. 137 (2009) 85-90. | MR 2439428 | Zbl 1226.20032

[2] M. T. Barlow and E. A. Perkins. Brownian motion on the Sierpiński gasket. Probab. Theory Related Fields 79 (1988) 543-623. | MR 966175 | Zbl 0635.60090

[3] G. Baumslag. Subgroups of finitely presented metabelian groups. J. Aust. Math. Soc. 16 (1973) 98-110. Collection of articles dedicated to the memory of Hanna Neumann, I. | MR 332999 | Zbl 0287.20027

[4] I. Benjamini and D. Revelle. Instability of set recurrence and Green's function on groups with the Liouville property. Potential Anal. 34 (2011) 199-206. | MR 2754971 | Zbl 1223.05286

[5] G. R. Conner. Discreteness properties of translation numbers in solvable groups. J. Group Theory 3 (2000) 77-94. | MR 1736519 | Zbl 0956.20039

[6] T. Davis and A. Olshanskii. Subgroup distortion in wreath products of cyclic groups. J. Pure Appl. Algebra 215 (2011) 2987-3004. | MR 2811580 | Zbl 1259.20049

[7] Y. Derriennic. Quelques applications du théorème ergodique sous-additif. In Conference on Random Walks (Kleebach, 1979) 183-201. Astérisque 74. Soc. Math. France, Paris, 1980. | MR 588163 | Zbl 0446.60059

[8] R. Durrett. Probability: Theory and Examples, 4th edition. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Univ. Press, Cambridge, 2010. | MR 2722836 | Zbl 1202.60001

[9] A. Erschler. On drift and entropy growth for random walks on groups. Ann. Probab. 31 (2003) 1193-1204. | MR 1988468 | Zbl 1043.60005

[10] A. Erschler. Critical constants for recurrence of random walks on G-spaces. Ann. Inst. Fourier (Grenoble) 55 (2005) 493-509. | Numdam | MR 2147898 | Zbl 1133.20031

[11] S. M. Gersten. Preservation and distortion of area in finitely presented groups. Geom. Funct. Anal. 6 (1996) 301-345. | MR 1384614 | Zbl 0868.20033

[12] A. Grigor'Yan. Escape rate of Brownian motion on Riemannian manifolds. Appl. Anal. 71 (1999) 63-89. | MR 1690091 | Zbl 1020.58024

[13] Y. Guivarc'H. Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire. In Conference on Random Walks (Kleebach, 1979) 47-98. Astérisque 74. Soc. Math. France, Paris, 1980. | MR 588157 | Zbl 0448.60007

[14] W. Hebisch and L. Saloff-Coste. Gaussian estimates for Markov chains and random walks on groups. Ann. Probab. 21 (1993) 673-709. | MR 1217561 | Zbl 0776.60086

[15] V. A. Kaĭmanovich and A. M. Vershik. Random walks on discrete groups: Boundary and entropy. Ann. Probab. 11 (1983) 457-490. | MR 704539 | Zbl 0641.60009

[16] J. F. C. Kingman. The ergodic theory of subadditive stochastic processes. J. Roy. Statist. Soc. Ser. B 30 (1968) 499-510. | MR 254907 | Zbl 0182.22802

[17] J. R. Lee and Y. Peres. Harmonic maps on amenable groups and a diffusive lower bound for random walks. Preprint, 2009. | MR 3127886 | Zbl pre06226028

[18] V. Nekrashevych. Self-Similar Groups. Mathematical Surveys and Monographs 117. Amer. Math. Soc., Providence, RI, 2005. | MR 2162164 | Zbl 1087.20032

[19] D. V. Osin. Exponential radicals of solvable Lie groups. J. Algebra 248 (2002) 790-805. | MR 1882124 | Zbl 1001.22006

[20] C. Pittet. Følner sequences in polycyclic groups. Rev. Mat. Iberoamericana 11 (1995) 675-685. | MR 1363210 | Zbl 0842.20035

[21] F. Redig. Mathematical aspects of the abelian sandpile model. In Mathematical Statistical Physics 657-729. Elsevier, Amsterdam, 2006. | MR 2581895 | Zbl pre05723807

[22] D. Revelle. Rate of escape of random walks on wreath products and related groups. Ann. Probab. 31 (2003) 1917-1934. | MR 2016605 | Zbl 1051.60047

[23] P. Révész. Random Walk in Random and Non-Random Environments, 2nd edition. World Scientific, Hackensack, NJ, 2005. | Zbl 1283.60007

[24] D. Segal. Polycyclic Groups. Cambridge Tracts in Mathematics 82. Cambridge Univ. Press, Cambridge, 1983. | MR 713786 | Zbl 0516.20001

[25] R. Tessera. Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces. Comment. Math. Helv. 86 (2011) 499-535. | MR 2803851 | Zbl 1274.43009

[26] E. Teufl. The average displacement of the simple random walk on the Sierpiński graph. Combin. Probab. Comput. 12 (2003) 203-222. | MR 1967404 | Zbl 1025.60034

[27] N. T. Varopoulos. Long range estimates for Markov chains. Bull. Sci. Math. 109 (1985) 225-252. | MR 822826 | Zbl 0583.60063

[28] A. D. Warshall. Deep pockets in lattices and other groups. Trans. Amer. Math. Soc. 362 (2010) 577-601. | MR 2551498 | Zbl 1269.20034