Random hysteresis loops
Annales de l'I.H.P. Probabilités et statistiques, Volume 49 (2013) no. 2, p. 307-339

Dynamical hysteresis is a phenomenon which arises in ferromagnetic systems below the critical temperature as a response to adiabatic variations of the external magnetic field. We study the problem in the context of the mean-field Ising model with Glauber dynamics, proving that for frequencies of the magnetic field oscillations of order N -2/3 , N the size of the system, the “critical” hysteresis loop becomes random.

L’hystérésis dynamique est un phénomène qu’on observe dans les systèmes ferromagnétiques au-dessous de la temperature critique, en réponse à des variations adiabatiques du champ magnétique extérieur. Nous étudions le problème dans le contexte du modéle d’Ising de champ moyen avec la dynamique de Glauber, en montrant que, pour des fréquences d’oscillations du champ magnétique d’ordre de N -2/3 , avec N la taille du système, la boucle d’hystérésis « critique » devient aléatoire.

DOI : https://doi.org/10.1214/11-AIHP461
Classification:  82C20
Keywords: hysteresis, Ising, mean field Glauber dynamics, macroscopic fluctuations
@article{AIHPB_2013__49_2_307_0,
     author = {Carinci, Gioia},
     title = {Random hysteresis loops},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {49},
     number = {2},
     year = {2013},
     pages = {307-339},
     doi = {10.1214/11-AIHP461},
     zbl = {1277.82035},
     mrnumber = {3088372},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2013__49_2_307_0}
}
Carinci, Gioia. Random hysteresis loops. Annales de l'I.H.P. Probabilités et statistiques, Volume 49 (2013) no. 2, pp. 307-339. doi : 10.1214/11-AIHP461. http://www.numdam.org/item/AIHPB_2013__49_2_307_0/

[1] M. Acharyya and B. K. Chakrabarti. Response of Ising systems to oscillating and pulsed fields: Hysteresis, ac, and pulse susceptibility. Phys. Rev. B 52 (1995) 6550-6568.

[2] N. Berglund and B. Gentz. Pathwise description of dynamic pitchfork bifurcations with additive noise. Probab. Theory Related Fields 122 (2002) 341-388. | MR 1892851 | Zbl 1008.37031

[3] N. Berglund and B. Gentz. A sample-paths approach to noise-induced synchronization: Stochastic resonance in a double-well potential. Ann. Appl. Probab. 12 (2002) 1419-1470. | MR 1936599 | Zbl 1023.60052

[4] N. Berglund and B. Gentz. The effect of additive noise on dynamical hysteresis. Nonlinearity 15 (2002) 605-632. | MR 1901095 | Zbl 1073.37061

[5] G. Bertotti. Hysteresis in Magnetism. Academic Press, Boston, 1998.

[6] G. Bertotti and I. D. Mayergoyz. The Science of Hysteresis, Mathematical Modeling and Applications, Vol. I. Elsevier, Amsterdam, 2006. | MR 2307929 | Zbl 1117.34045

[7] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1999. | MR 1700749 | Zbl 0172.21201

[8] G. Carinci. Stochastic effects in critical regimes. Ph.D. thesis, Università degli Studi dell'Aquila, 2010.

[9] P. Jung, G. Gray, R. Roy and P. Mandel. Scaling law for dynamical hysteresis. Phys. Rev. Lett. 65 (1990) 1873-1876.

[10] G. Korniss, M. A. Novotny, P. A. Rikvold and C. J. White. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field. Phys. Rev. E 63 (2000) 016120.

[11] G. Korniss, M. A. Novotny and P. A. Rikvold. Absence of first-order transition and tricritical point in the dynamic phase diagram of a spatially extended bistable system in an oscillating field. Phys. Rev. E 66 (2002) 056127. | MR 1948573

[12] H. Landau and L. A. Shepp. On the supremum of a Gaussian process. Sankhya A 32 (1970) 369-378. | MR 286167 | Zbl 0218.60039

[13] W. V. Li. Small deviations for Gaussian Markov processes under the sup-norm. J. Theoret. Probab. 12 (1999) 971-984. | MR 1729464 | Zbl 0961.60051

[14] M. B. Marcus and L. A. Shepp. Sample behaviour of Gaussian processes. In Proceedings of the 6th Berkeley Symposium on Mathematics, Statistic and Probability, Vol. 2 423-441. Univ. California Press, Berkeley, CA, 1972. | MR 402896 | Zbl 0379.60040

[15] M. A. Novotny, P. A. Rikvold and S. W. Sides. Stochastic hysteresis and resonance in a kinetic Ising system. Phys. Rev. E 57 (1998) 6512-6533.

[16] M. A. Novotny, P. A. Rikvold and S. W. Sides. Kinetic Ising model in an oscillating field: Finite-size scaling at the dynamic phase transition. Phys. Rev. Lett. 81 (1998) 834-837.

[17] M. A. Novotny, P. A. Rikvold and S. W. Sides. Kinetic Ising model in an oscillating field: Avrami theory for the hysteretic response and finite-size scaling for the dynamic phase transition. Phys. Rev. E 59 (1999) 2710-2729.

[18] D. Pollard. Convergence of Stochastic Processes. Springer, New York, 1984. | MR 762984 | Zbl 0544.60045

[19] E. Presutti. Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Springer, Berlin, 2009. | MR 2460018 | Zbl 1156.82001

[20] M. Rao, H. R. Krishnamurthy and R. Pandit. Magnetic hysteresis in two model spin systems. Phys. Rev. B 42-1 (1990) 856-884.

[21] T. Tomé and M. J. De Oliveira. Dynamic phase transition in the kinetic Ising model under a time-dependent oscillating field. Phys. Rev. A 41 (1990) 4251-4254.

[22] A. Visintin. Differential Models of Hysteresis. Springer, Berlin, 1994. | MR 1329094 | Zbl 0820.35004

[23] H. Zhu, S. Dong and J. M. Liu. Hysteresis loop area of the Ising model. Phys. Rev. B 70 (2004) 132403.