Long time behaviour and stationary regime of memory gradient diffusions
Annales de l'I.H.P. Probabilités et statistiques, Volume 50 (2014) no. 2, p. 564-601

In this paper, we are interested in a diffusion process based on a gradient descent. The process is non Markov and has a memory term which is built as a weighted average of the drift term all along the past of the trajectory. For this type of diffusion, we study the long time behaviour of the process in terms of the memory. We exhibit some conditions for the long-time stability of the dynamical system and then provide, when stable, some convergence properties of the occupation measures and of the marginal distribution, to the associated steady regimes. When the memory is too long, we show that in general, the dynamical system has a tendency to explode, and in the particular Gaussian case, we explicitly obtain the rate of divergence.

Nous nous intéressons dans ce travail à une diffusion issue d'une descente de gradient, dont le terme de dérive utilise une mémoire sur le passé de la trajectoire. Le processus ainsi introduit est non-Markovien. Nous étudions les propriétés de stabilité et de convergence à l'équilibre des mesures d'occupation des trajectoires. Dans les situations stables, nous donnons des vitesses de convergence à la stationnarité alors que dans les cas où la mémoire possède une longue portée, nous prouvons l'explosion du système dynamique. Nous exhibons enfin des formules précises dans le cas gaussien.

DOI : https://doi.org/10.1214/12-AIHP536
Classification:  60J60,  60G10,  37A25,  93D30,  35H10
Keywords: stochastic differential equation, memory diffusions, ergodic processes, Lyapunov function
@article{AIHPB_2014__50_2_564_0,
     author = {Gadat, S\'ebastien and Panloup, Fabien},
     title = {Long time behaviour and stationary regime of memory gradient diffusions},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {50},
     number = {2},
     year = {2014},
     pages = {564-601},
     doi = {10.1214/12-AIHP536},
     zbl = {1299.60092},
     mrnumber = {3189085},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2014__50_2_564_0}
}
Gadat, Sébastien; Panloup, Fabien. Long time behaviour and stationary regime of memory gradient diffusions. Annales de l'I.H.P. Probabilités et statistiques, Volume 50 (2014) no. 2, pp. 564-601. doi : 10.1214/12-AIHP536. http://www.numdam.org/item/AIHPB_2014__50_2_564_0/

[1] F. Alvarez. On the minimizing property of a second order dissipative system in Hilbert spaces. SIAM J. Control Optim. 38(4) (2000) 1102-1119. | MR 1760062 | Zbl 0954.34053

[2] F. Alvarez, H. Attouch, J. Bolte and P. Redont. A second-order gradient-like dissipative dynamical system with Hessian-driven damping. Application to optimization and mechanics. Journal des Mathématiques Pures et Appliquées 81(8) (2002) 747-779. | MR 1930878 | Zbl 1036.34072

[3] A. S. Antipin. Minimization of convex functions on convex sets by means of differential equations (in Russian). Differ. Eq. 30(9) (1994) 1365-1375. | MR 1347800 | Zbl 0852.49021

[4] Y. Bakhtin. Existence and uniqueness of stationary solution of nonlinear stochastic differential equation with memory. Theory Probab. Appl. 47(4) (2002) 684-688. | MR 2001790 | Zbl 1054.60062

[5] Y. Bakhtin. Lyapunov exponents for stochastic differential equations with infinite memory and application to stochastic Navier-Stokes equations. Discrete Contin. Dyn. Syst. Ser. B 6(4) (2006) 697-709. | MR 2223903 | Zbl 1154.34043

[6] Y. Bakhtin and J. Mattingly. Stationary solutions of stochastic differential equations with memory and stochastic partial differential equations. Commun. Contemp. Math. 7(5) (2005) 553-582. | MR 2175090 | Zbl 1098.34063

[7] D. Bakry, P. Cattiaux and A. Guillin. Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincare. J. Funct. Anal. 254(3) (2008) 727-759. | MR 2381160 | Zbl 1146.60058

[8] V. Bally and A. Kohatsu-Higa. Lower bounds for densities of Asian type stochastic differential equations. J. Funct. Anal. 258(9) (2010) 3134-3164. | MR 2595738 | Zbl 1196.60105

[9] M. Benaïm and M. W. Hirsch. Asymptotic pseudotrajectories and chain recurrent flows, with applications. J. Dynam. Differ. Eq. 8(1) (1996) 141-176. | MR 1388167 | Zbl 0878.58053

[10] M. Benaïm, M. Ledoux and O. Raimond. Self-interacting diffusions. Probab. Theory Related Fields 122(1) (2002) 1-41. | MR 1883716 | Zbl 1042.60060

[11] M. Benaïm and O. Raimond. Self-interacting diffusions III: Symmetric interactions. Ann. Probab. 33(5) (2003) 1716-1759. | MR 2165577 | Zbl 1085.60073

[12] F. Bolley, A. Guillin and F. Malrieu. Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation. Mathematical Modelling and Numerical Analysis 44(5) (2010) 867-884. | Numdam | MR 2731396 | Zbl 1201.82029

[13] A. Cabot. Asymptotics for a gradient system with memory term. Proc. Amer. Math. Soc. 137(9) (2009) 3013-3024. | MR 2506460 | Zbl 1177.34065

[14] A. Cabot, H. Engler and S. Gadat. On the long time behavior of second order differential equations with asymptotically small dissipation. Trans. Amer. Math. Soc. 361(11) (2009) 5983-6017. | MR 2529922 | Zbl 1191.34078

[15] A. Cabot, H. Engler and S. Gadat. Second-order differential equations with asymptotically small dissipation and piecewise flat potentials. Electron. J. Differential Equations 17 (2009) 33-38. | MR 2605582 | Zbl 1171.34323

[16] P. Cattiaux and L. Mesnager. Hypoelliptic non-homogeneous diffusions. Probab. Theory Related Fields 123(4) (2002) 453-483. | MR 1921010 | Zbl 1009.60058

[17] M. Chaleyat-Maurel and D. Michel. Hypoellipticity theorems and conditionnal laws. Z. Wahrsch. verw. Gebiete 65(4) (1984) 573-597. | MR 736147 | Zbl 0524.35028

[18] S. Chambeu and A. Kurtzmann. Some particular self-interacting diffusions: Ergodic behaviour and almost sure convergence. Bernoulli 17(4) (2011) 1248-1267. | MR 2854771 | Zbl 1242.60101

[19] D. Coppersmith and P. Diaconis. Random walk with reinforcement. Preprint, 1987.

[20] J. M. Coron. Control and Nonlinearity. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2007. | MR 2302744 | Zbl 1140.93002

[21] M. Cranston and Y. Le Jan. Self-attracting diffusions: Two case studies. Math. Ann. 303(1) (1995) 87-93. | MR 1348356 | Zbl 0838.60052

[22] G. Da Prato and J. Zabczyk. Ergodicity for Infinite-Dimensional Systems. Mathematical Society Lecture Note Series. Cambridge Univ. Press, London, 1996. | MR 1417491 | Zbl 0849.60052

[23] F. Delarue and S. Menozzi. Density estimates for a random noise propagating through a chain of differential equations. J. Funct. Anal. 259(6) (2010) 1577-1630. | MR 2659772 | Zbl 1223.60037

[24] R. Douc, G. Fort and A. Guillin. Subgeometric rates of convergence of f-ergodic strong Markov processes. Stochastic Process. Appl. 119(3) (2009) 897-923. | MR 2499863 | Zbl 1163.60034

[25] D. Down, S. P. Meyn and R. L. Tweedie. Exponential and uniform ergodicity of Markov processes. Ann. Probab. 23(4) (1995) 1671-1691. | MR 1379163 | Zbl 0852.60075

[26] R. T. Durrett and L. C. G. Rogers. Asymptotic behavior of Brownian polymers. Probab. Theory Related Fields 92(3) (1992) 337-349. | MR 1165516 | Zbl 0767.60080

[27] S. N. Ethier and T. G. Kurtz. Markov Processes. Wiley, New York, 1986. | MR 838085 | Zbl 0592.60049

[28] M. Hairer. On Malliavin's proof of Hörmander's theorem. Bull. Sci. Math. 165(6-7) (2011) 650-666. | MR 2838095 | Zbl 1242.60085

[29] A. Haraux. Systèmes dynamiques dissipatifs et applications. R.M.A. Masson, Paris, 1991. | MR 1084372 | Zbl 0726.58001

[30] R. Z. Has'Minskii. Stochastic Stability of Differential Equations. Sijthoff & Noordhoff, Alphen aan den Rijn, The Nederlands, 1980. | MR 600653 | Zbl 0441.60060

[31] L. Hörmander. Hypoelliptic second order differential equations. Acta Math. 117(4) (1967) 147-171. | MR 222474 | Zbl 0156.10701

[32] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam, 1981. | MR 1011252 | Zbl 0684.60040

[33] J. J. Kohn. Pseudodifferential Operator with Applications. Lectures on Degenerate Elliptic Problems. Liguori, Naples, 1977. | MR 660652 | Zbl 0448.35046

[34] A. Kurtzmann. The ODE method for some self-interacting diffusions on d . Ann. Inst. Henri Poincaré Probab. Stat. 3 (2010) 618-643. | Numdam | MR 2682260 | Zbl 1215.60056

[35] D. Lamberton and G. Pagès. Recursive computation of the invariant distribution of a diffusion: The case of a weakly mean reverting drift. Stoch. Dyn. 3(4) (2003) 435-451. | MR 2030742 | Zbl 1044.60069

[36] R. Pemantle. Vertex-reinforced random walk. Probab. Theory Related Fields 1 (1992) 117-136. | MR 1156453 | Zbl 0741.60029

[37] B. T. Polyak. Introduction to Optimization. Optimization Software, New York, 1987. | MR 1099605 | Zbl 0652.49002

[38] O. Raimond. Self-attracting diffusions: Case of the constant interaction. Probab. Theory Related Fields 107(2) (1997) 177-196. | MR 1431218 | Zbl 0881.60055

[39] D. W. Stroock and S. R. S. Varadhan. Diffusion processes. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. III: Probability Theory 361-368. Univ. California Press, Berkeley, 1972. | MR 397899 | Zbl 0255.60055

[40] F. Treves. Introduction to Pseudodifferential and Fourier Integral Operators. Vol. 1. Plenum Press, New York, 1980. | MR 597144 | Zbl 0453.47027

[41] C. Villani. Hypocoercivity. Mem. Amer. Math. Soc. 202(950) (2009) iv+141. | MR 2562709 | Zbl 1197.35004

[42] L. Wu. Large and moderate deviations and exponential convergence for stochastic damping Hamilton systems. Stochastic Process. Appl. 91(2) (2001) 205-238. | MR 1807683 | Zbl 1047.60059