Dans un article précédent, les auteurs ont démontré une conjecture de Lalley et Sellke stipulant que la loi empirique (en faisant la moyenne sur les temps) du maximum du mouvement brownien branchant converge presque sûrement vers une loi de Gumbel. Ce résultat est généralisé ici au système de particules extrémales, c’est-à-dire celles se situant près du maximum. Précisément, il est démontré que la loi conjointe empirique des positions des particules extrémales converge vers la loi d’un processus poissonien de nuages.
In a previous paper, the authors proved a conjecture of Lalley and Sellke that the empirical (time-averaged) distribution function of the maximum of branching Brownian motion converges almost surely to a Gumbel distribution. The result is extended here to the entire system of particles that are extremal, i.e. close to the maximum. Namely, it is proved that the distribution of extremal particles under time-average converges to a Poisson cluster process.
Mots clés : branching brownian motion, ergodicity, extreme value theory, KPP equation and traveling waves
@article{AIHPB_2015__51_2_557_0, author = {Arguin, Louis-Pierre and Bovier, Anton and Kistler, Nicola}, title = {An ergodic theorem for the extremal process of branching brownian motion}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {557--569}, publisher = {Gauthier-Villars}, volume = {51}, number = {2}, year = {2015}, doi = {10.1214/14-AIHP608}, mrnumber = {3335016}, zbl = {1315.60063}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/14-AIHP608/} }
TY - JOUR AU - Arguin, Louis-Pierre AU - Bovier, Anton AU - Kistler, Nicola TI - An ergodic theorem for the extremal process of branching brownian motion JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 557 EP - 569 VL - 51 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/14-AIHP608/ DO - 10.1214/14-AIHP608 LA - en ID - AIHPB_2015__51_2_557_0 ER -
%0 Journal Article %A Arguin, Louis-Pierre %A Bovier, Anton %A Kistler, Nicola %T An ergodic theorem for the extremal process of branching brownian motion %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 557-569 %V 51 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/14-AIHP608/ %R 10.1214/14-AIHP608 %G en %F AIHPB_2015__51_2_557_0
Arguin, Louis-Pierre; Bovier, Anton; Kistler, Nicola. An ergodic theorem for the extremal process of branching brownian motion. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 2, pp. 557-569. doi : 10.1214/14-AIHP608. http://archive.numdam.org/articles/10.1214/14-AIHP608/
[1] The branching Brownian motion seen from its tip. Probab. Theory Related Fields 157 (2013) 405–451. | DOI | MR | Zbl
, , and .[2] The genealogy of extremal particles of branching Brownian motion. Comm. Pure Appl. Math. 64 (2011) 1647–1676. | DOI | MR | Zbl
, and .[3] Poissonian statistics in the extremal process of branching Brownian motion. Ann. Appl. Probab. 22 (2012) 1693–1711. | MR | Zbl
, and .[4] The extremal process of branching Brownian motion. Probab. Theory Related Fields 157 (2013) 535–574. | DOI | MR | Zbl
, and .[5] An ergodic theorem for the frontier of branching Brownian motion. Electron. J. Probab. 18 (53) (2013) 1–25. | MR | Zbl
, and .[6] Maximal displacement of branching Brownian motion. Comm. Pure Appl. Math. 31 (1978) 531–581. | DOI | MR | Zbl
.[7] Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc. 44 (285) (1983) iv+190. | DOI | MR | Zbl
.[8] Statistics at the tip of a branching random walk and the delay of travelling waves. Euro Phys. Lett. 87 (2009) 60010.
and .[9] A branching random walk seen from the tip. J. Stat. Phys. 143 (2010) 420–446. | DOI | MR | Zbl
and .[10] Supercritical branching Brownian motion and K–P–P equation in the critical speed-area. Math. Nachr. 149 (1990) 41–59. | DOI | MR | Zbl
and .[11] The wave of advance of advantageous genes. Ann. Eugen. 7 (1937) 355–369. | DOI | JFM
.[12] Branching Brownian motion seen from its left-most particle. Séminaire Bourbaki, 65ème année, no. 1067, 2013. Available at arXiv:1305.4396.
.[13] Random Measures. Springer, Berlin, 1986. | MR | Zbl
.[14] Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. Moskov Ser. Internat. Sect. 1 (1937) 1–25. | Zbl
, and .[15] A conditional limit theorem for the frontier of a branching Brownian motion. Ann. Probab. 15 (1987) 1052–1061. | DOI | MR | Zbl
and .[16] Strong laws of large numbers for weakly correlated random variables. Michigan Math. J. 35 (1988) 353–359. | DOI | MR | Zbl
.[17] Application of Brownian motion to the equation of Kolmogorov–Petrovskii–Piskunov. Comm. Pure Appl. Math. 28 (1976) 323–331. | DOI | MR | Zbl
.[18] Processus ponctuels. In École d’Été de Probabilités de Saint-Flour VI – 1976 249–445. Lecture Notes in Math. 598. Springer, Berlin, 1977. | MR | Zbl
.[19] Branching diffusion processes in population genetics. Adv. in Appl. Probab. 8 (1976) 659–689. | DOI | MR | Zbl
.Cité par Sources :