The spatial Lambda-Fleming–Viot process: An event-based construction and a lookdown representation
Annales de l'I.H.P. Probabilités et statistiques, Volume 51 (2015) no. 2, p. 570-598

We construct a measure-valued equivalent to the spatial 𝛬-Fleming–Viot process (SLFV) introduced in (Banach Center Publ. 80 (2008) 121–144). In contrast with the construction carried out there, we fix the realization of the sequence of reproduction events and obtain a quenched evolution of the local genetic diversities. To this end, we use a particle representation which highlights the role of the genealogies in the attribution of types (or alleles) to the individuals of the population. This construction also enables us to clarify the state-space of the SLFV and to derive several path properties of the measure-valued process as well as of the labeled trees describing the genealogical relations between a sample of individuals. We complement it with a look-down construction which provides a particle system whose empirical distribution at time t, seen as a process in t, has the law of the quenched SLFV. In all these results, the facts that we work with a fixed configuration of events and that reproduction occurs only locally in space introduce serious technical issues that are overcome by controlling the number of events occurring and of particles present in a given area over macroscopic time intervals.

Nous construisons un processus à valeurs mesures équivalent au processus 𝛬-Fleming–Viot spatial (SLFV) introduit dans (Banach Center Publ. 80 (2008) 121–144). Contrairement à la construction effectuée dans (Banach Center Publ. 80 (2008) 121–144), nous fixons une réalisation de la suite d’événements de reproduction et obtenons une évolution quenched des diversités génétiques locales. Pour ce faire, nous utilisons une représentation particulaire qui met en avant le rôle des généalogies dans l’attribution des types (ou allèles) aux individus de la population. Cette construction nous permet également de clarifier l’espace d’états du SLFV et d’obtenir plusieurs propriétés trajectorielles du processus à valeurs mesures, ainsi que des arbres étiquetés qui décrivent les relations généalogiques liant un échantillon d’individus. Nous complétons ces résultats avec une construction look-down fournissant un système de particules dont la mesure empirique au temps t, vue comme un processus en t, a même loi que le SLFV quenched. Dans tous ces résultats, le fait que nous travaillions à configuration d’événements fixée et que les reproductions ne se produisent que localement (en espace) introduisent de sérieuses difficultés techniques qui sont surmontées en contrôlant le nombre d’événements et de particules présentes dans une zone donnée de l’espace pendant un laps de temps macroscopique.

DOI : https://doi.org/10.1214/13-AIHP571
Classification:  60J25,  92D10,  60K37,  60J75,  60F15
Keywords: random environment, generalised Fleming–Viot process, spatial coalescent, look-down construction
@article{AIHPB_2015__51_2_570_0,
     author = {V\'eber, A. and Wakolbinger, A.},
     title = {The spatial Lambda-Fleming--Viot process: An event-based construction and a lookdown representation},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {51},
     number = {2},
     year = {2015},
     pages = {570-598},
     doi = {10.1214/13-AIHP571},
     mrnumber = {3335017},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2015__51_2_570_0}
}
Véber, A.; Wakolbinger, A. The spatial Lambda-Fleming–Viot process: An event-based construction and a lookdown representation. Annales de l'I.H.P. Probabilités et statistiques, Volume 51 (2015) no. 2, pp. 570-598. doi : 10.1214/13-AIHP571. http://www.numdam.org/item/AIHPB_2015__51_2_570_0/

[1] O. Angel, N. Berestycki and V. Limic. Global divergence of spatial coalescents. Probab. Theory Related Fields 152 (2012) 625–679. | MR 2892958 | Zbl 1271.92022

[2] N. H. Barton, A. M. Etheridge and A. Véber. A new model for evolution in a spatial continuum. Electron. J. Probab. 15 (2010) 162–216. | MR 2594876 | Zbl 1203.60107

[3] N. H. Barton, A. M. Etheridge and A. Véber. Modelling evolution in a spatial continuum. J. Stat. Mech. (2013) P01002.

[4] N. H. Barton, A. M. Etheridge, J. Kelleher and A. Véber. Inference in two dimensions: allele frequencies versus lengths of shared sequence blocks. Theor. Pop. Biol. 87 (2013) 105–119. | Zbl 1296.92142

[5] N. H. Barton, J. Kelleher and A. M. Etheridge. A new model for extinction and recolonization in two dimensions: Quantifying phylogeography. Evolution 64 (2010) 2701–2715.

[6] N. Berestycki, A. M. Etheridge and M. Hutzenthaler. Survival, extinction and ergodicity in a spatially continuous population model. Markov Process. Related Fields 15 (2009) 265–288. | MR 2554364 | Zbl 1177.92029

[7] N. Berestycki, A. M. Etheridge and A. Véber. Large scale behaviour of the spatial 𝛬-Fleming–Viot process. Ann. Inst. H. Poincaré Probab. Statist. 49 (2013) 374–401. | Numdam | MR 3088374 | Zbl 06171252

[8] J. Bertoin and J.-F. Le Gall. Stochastic flows associated to coalescent processes I. Probab. Theory Related Fields 126 (2003) 261–288. | MR 1990057 | Zbl 1023.92018

[9] M. Birkner, J. Blath, M. Capaldo, A. M. Etheridge, M. Möhle, J. Schweinsberg and A. Wakolbinger. Alpha-stable branching and Beta-coalescents. Electron. J. Probab. 10 (2005) 303–325. | MR 2120246 | Zbl 1066.60072

[10] M. Birkner, J. Blath, M. Möhle, M. Steinrücken and J. Tams. A modified lookdown construction for the 𝛯-Fleming–Viot process with mutation and populations with recurrent bottlenecks. Alea 6 (2009) 25–61. | MR 2485878 | Zbl 1162.60342

[11] P. Donnelly, S. N. Evans, K. Fleischmann, T. G. Kurtz and X. Zhou. Continuum-sites stepping-stone models, coalescing exchangeable partitions, and random trees. Ann. Probab. 28 (2010) 1063–1110. | MR 1797304 | Zbl 1023.60082

[12] P. Donnelly and T. G. Kurtz. A countable representation of the Fleming–Viot measure-valued diffusion. Ann. Probab. 24 (1996) 698–742. | MR 1404525 | Zbl 0869.60074

[13] P. Donnelly and T. G. Kurtz. Particle representations for measure-valued population models. Ann. Probab. 27 (1999) 166–205. | MR 1681126 | Zbl 0956.60081

[14] A. M. Etheridge. Drift, draft and structure: Some mathematical models of evolution. Banach Center Publ. 80 (2008) 121–144. | MR 2433141 | Zbl 1144.92032

[15] A. M. Etheridge and T. G. Kurtz. Genealogical constructions of population models. Preprint, 2012.

[16] A. M. Etheridge and A. Véber. The spatial 𝛬-Fleming–Viot process on a large torus: Genealogies in the presence of recombination. Ann. Appl. Probab. 22 (2012) 2165–2209. | MR 3024966 | Zbl 1273.60092

[17] S. N. Evans. Coalescing Markov labelled partitions and a continuous sites genetics model with infinitely many types. Ann. Inst. H. Poincaré Probab. Statist. 33 (1997) 339–358. | Numdam | MR 1457055 | Zbl 0884.60096

[18] N. Freeman. The segregated Lambda-coalescent. Ann. Probab. 43 (2015) 435–467. | MR 3305997

[19] O. Kallenberg. Foundations of Modern Probability, 2nd edition. Springer, New York, 2002. | MR 1876169 | Zbl 0892.60001

[20] T. G. Kurtz and E. R. Rodrigues. Poisson representations of branching Markov and measure-valued branching processes. Ann. Probab. 39 (2011) 939–984. | MR 2789580 | Zbl 1232.60053

[21] V. Limic and A. Sturm. The spatial 𝛬-coalescent. Electron. J. Probab. 11 (2006) 363–393. | MR 2223040 | Zbl 1113.60077

[22] H. Liu and X. Zhou. The compact support property for the Lambda-Fleming–Viot process with underlying Brownian motion. Electron. J. Probab. 17 (2012) Article 73. | MR 2968680 | Zbl 1260.60098

[23] P. Pfaffelhuber and A. Wakolbinger. The process of most recent common ancestors in an evolving coalescent. Stochastic Process. Appl. 116 (2006) 1836–1859. | MR 2307061 | Zbl 1110.92030

[24] J. Pitman. Coalescents with multiple collisions. Ann. Probab. 27 (1999) 1870–1902. | MR 1742892 | Zbl 0963.60079

[25] J. Schweinsberg. Coalescents with simultaneous multiple collisions. Electron. J. Probab. 5 (2000) 1–50. | MR 1781024 | Zbl 0959.60065

[26] J. Schweinsberg. A necessary and sufficient condition for the 𝛬-coalescent to come down from infinity. Electron. Comm. Probab. 5 (2000) 1–11. | MR 1736720 | Zbl 0953.60072