On the rate of convergence for critical crossing probabilities
Annales de l'I.H.P. Probabilités et statistiques, Volume 51 (2015) no. 2, p. 672-715

For the site percolation model on the triangular lattice and certain generalizations for which Cardy’s Formula has been established we acquire a power law estimate for the rate of convergence of the crossing probabilities to Cardy’s Formula.

Dans le modèle de percolation sur le réseau triangulaire et pour certaines généralisations pour lesquelles la formule de Cardy a été établie, nous démontrons un taux de convergence en loi de puissance des probabilités de percolation vers la formule de Cardy.

DOI : https://doi.org/10.1214/13-AIHP589
Classification:  82B43,  60K35,  82B27
Keywords: critical percolation, crossing probability, triangular lattice, conformal invariance, Cardy’s formula
@article{AIHPB_2015__51_2_672_0,
     author = {Binder, I. and Chayes, L. and Lei, H. K.},
     title = {On the rate of convergence for critical crossing probabilities},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {51},
     number = {2},
     year = {2015},
     pages = {672-715},
     doi = {10.1214/13-AIHP589},
     mrnumber = {3335021},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2015__51_2_672_0}
}
Binder, I.; Chayes, L.; Lei, H. K. On the rate of convergence for critical crossing probabilities. Annales de l'I.H.P. Probabilités et statistiques, Volume 51 (2015) no. 2, pp. 672-715. doi : 10.1214/13-AIHP589. http://www.numdam.org/item/AIHPB_2015__51_2_672_0/

[1] M. Aizenman, J. T. Chayes, L. Chayes, J. Fröhlich and L. Russo. On a sharp transition from area law to perimeter law in a system of random surfaces. Comm. Math. Phys. 92 (1983) 19–69. | MR 728447 | Zbl 0529.60099

[2] V. Beffara. Cardy’s Formula on the triangular lattice, the easy way. In Universality and Renormalization 39–45. Fields Institute Communications 50. Amer. Math. Soc., Providence, RI, 2007. | MR 2310300 | Zbl 1126.60081

[3] C. Beneš, F. Johansson Viklund and M. J. Kozdron. On the rate of convergence of loop-erased random walk to SLE 2 . Comm. Math. Phys. 318 (2013) 307–354. | MR 3020160 | Zbl 1268.60117

[4] I. Binder, L. Chayes and H. K. Lei. On convergence to SLE 6 I: Conformal invariance for certain models of the bond-triangular type. J. Stat. Phys. 141 (2) (2010) 359–390. | MR 2726646 | Zbl 1203.82051

[5] I. Binder, L. Chayes and H. K. Lei. On convergence to SLE 6 II: Discrete approximations and extraction of Cardy’s formula for general domains. J. Stat. Phys. 141 (2) (2010) 391–408. | MR 2726647 | Zbl 1203.82052

[6] F. Camia and C. M. Newman. Critical percolation exploration path and SLE 6 : A proof of convergence. Probab. Theory Related Fields 139 (2007) 473–519. | MR 2322705 | Zbl 1126.82007

[7] J. L. Cardy. Critical percolation in finite geometries. J. Phys. A 25 (1992) 201–206. | MR 1151081 | Zbl 0965.82501

[8] L. Chayes. Discontinuity of the spin-wave stiffness in the two-dimensional XY model. Comm. Math. Phys. 197 (1998) 623–640. | MR 1652795 | Zbl 0941.82012

[9] L. Chayes. Mean field analysis of low-dimensional systems. Comm. Math. Phys. 292 (2009) 303–341. | MR 2544734 | Zbl 1184.82006

[10] L. Chayes and H. K. Lei. Cardy’s formula for certain models of the bond-triangular type. Rev. Math. Phys. 19 (5) (2007) 511–565. | MR 2337476 | Zbl 1152.82009

[11] T. E. Harris. A lower bound for the critical probability in a certain percolation process. Proc. Cambridge Philos. Soc. 56 (1960) 13–20. | MR 115221 | Zbl 0122.36403

[12] G. F. Lawler. Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs 114. Amer. Math. Soc., Providence, RI, 2005. | MR 2129588 | Zbl 1074.60002

[13] D. Mendelson, A. Nachmias and S. S. Watson. Rate of convergence for Cardy’s formula. Comm. Math. Phys. 329 (1) (2014) 29–56. | MR 3206997 | Zbl 1294.82021

[14] S. Smirnov. Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Ser. I Math. 333 (2001) 239–244. | MR 1851632 | Zbl 0985.60090

[15] F. J. Viklund. Convergence rates for loop-erased random walk and other loewner curves. Ann. Probab. To appear, 2015. Available at http://arxiv.org/abs/1205.5734. | MR 3298470 | Zbl 06383623

[16] S. E. Warschawski. On the degree of variation in conformal mapping of variable regions. Trans. Amer. Math. Soc. 69 (2) (1950) 335–356. | MR 37912 | Zbl 0041.05102

[17] W. Werner. Lectures on two-dimensional critical percolation. In Statistical Mechanics 297–360. IAS/Park City Math. Ser. 16. Amer. Math. Soc., Providence, RI, 2009. | MR 2523462 | Zbl 1180.82003