Some support properties for a class of 𝛬-Fleming–Viot processes
Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 3, pp. 1076-1101.

Pour une classe de processus de 𝛬-Fleming–Viot avec dynamique brownienne sous-jacente dont les 𝛬-coalescents associés descendent de l’infini, nous obtenons une borne supérieure sur le module de continuité des processus ancestraux définis par la construction look-down de Donnelly et Kurtz. Comme applications, nous obtenons que le module de continuité du processus 𝛬-Fleming–Viot est majoré à tout temps positif t par la fonction Ctlog(1/t). Nous montrons aussi que le support est simultanément compact pour tout temps positif, et, en cas de compacité au temps initial, l’image est uniformément compacte sur tout intervalle de temps fini. En plus, sous une condition faible sur les taux de 𝛬-coalescence, nous obtenons une borne supérieure uniforme sur la dimension de Hausdorff du support et de l’image.

For a class of 𝛬-Fleming–Viot processes with underlying Brownian motion whose associated 𝛬-coalescents come down from infinity, we prove a one-sided modulus of continuity result for their ancestry processes recovered from the lookdown construction of Donnelly and Kurtz. As applications, we first show that such a 𝛬-Fleming–Viot support process has one-sided modulus of continuity (with modulus function Ctlog(1/t)) at any fixed time. We also show that the support is compact simultaneously at all positive times, and given the initial compactness, its range is uniformly compact over any finite time interval. In addition, under a mild condition on the 𝛬-coalescence rates, we find a uniform upper bound on Hausdorff dimension of the support and an upper bound on Hausdorff dimension of the range.

DOI : https://doi.org/10.1214/13-AIHP598
Mots clés : 𝛬-Fleming–Viot process, measure-valued process, 𝛬-coalescent, lookdown construction, ancestry process, compact support, modulus of continuity, Hausdorff dimension
@article{AIHPB_2015__51_3_1076_0,
     author = {Liu, Huili and Zhou, Xiaowen},
     title = {Some support properties for a class of ${\varLambda }$-Fleming--Viot processes},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {1076--1101},
     publisher = {Gauthier-Villars},
     volume = {51},
     number = {3},
     year = {2015},
     doi = {10.1214/13-AIHP598},
     mrnumber = {3365973},
     language = {en},
     url = {archive.numdam.org/item/AIHPB_2015__51_3_1076_0/}
}
Liu, Huili; Zhou, Xiaowen. Some support properties for a class of ${\varLambda }$-Fleming–Viot processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 3, pp. 1076-1101. doi : 10.1214/13-AIHP598. http://archive.numdam.org/item/AIHPB_2015__51_3_1076_0/

[1] D. J. Aldous. Exchangeability and related topics. In École d’Été de Probabilités de Saint-Flour XIII – 1983. Lecture Notes in Mathematics 1117 1–198. Springer, Berlin, 1985. | MR 883646 | Zbl 0562.60042

[2] J. Berestycki, N. Berestycki and V. Limic. The 𝛬-coalescent speed of coming down from infinity. Ann. Appl. Probab. 38(1) (2010) 207-233. | MR 2599198 | Zbl 1247.60110

[3] J. Bertoin and J.-F. Le Gall. Stochastic flows associated to coalescent processes. III. Limit theorems. Illinois J. Math. 50 (2006) 147–181. | MR 2247827 | Zbl 1110.60026

[4] M. Birkner and J. Blath. Measure-valued diffusions, general coalescents and population genetic inference. In Trends in Stochastic Analysis. London Math. Soc. Lecture Note Ser. 353 329–363. Cambridge Univ. Press, Cambridge, 2009. | MR 2562160 | Zbl 1170.92021

[5] M. Birkner, J. Blath, M. Capaldo, A. Etheridge, M. Möhle, J. Schweinsberg and A. Wakolbinger. α-stable branching and β-coalescents. Electron. J. Probab. 10 (9) (2005) 303–325. | EuDML 124863 | MR 2120246 | Zbl 1066.60072

[6] M. Birkner, J. Blath, M. Möhle, M. Steinrücken and J. Tams. A modified lookdown construction for the Xi-Fleming–Viot process with mutation and populations with recurrent bottlenecks. ALEA Lat. Am. J. Probab. Math. Stat. 6 (2009) 25–61. | MR 2485878 | Zbl 1162.60342

[7] J. Blath. Measure-valued processes, self-similarity and flickering random measures. In Fractal Geometry and Stochastics IV. Progr. Probab. 61 175–196. Birkhäuser, Basel, 2009. | MR 2762677 | Zbl 1195.60071

[8] D. A. Dawson. Infinitely divisible random measures and superprocesses, stochastic analysis and related topics. In Stochastic Analysis and Related Topics (Silivri, 1990). Progr. Probab. 31 1–129. Birkhäuser, Boston, MA, 1992. | MR 1203373 | Zbl 0785.60034

[9] D. A. Dawson. Measure-valued Markov processes. École d’Été de Probabilités de Saint-Flour XIII – 1991. Lecture Notes in Mathematics 1541 1–260. Springer, Berlin, 1993. | MR 1242575 | Zbl 0799.60080

[10] D. A. Dawson and K. J. Hochberg. Wandering random measures in the Fleming–Viot model. Ann. Appl. Probab. 10 (3) (1982) 554–580. | MR 659528 | Zbl 0492.60045

[11] D. A. Dawson, K. J. Hochberg and V. Vinogradov. High-density limits of hierarchically structured branching-diffusing populations. Stochastic Process. Appl. 62 (1996) 191–222. | MR 1397704 | Zbl 0863.60031

[12] D. A. Dawson, I. Iscoe and E. A. Perkins. Super-Brownian motion: Path properties and hitting probabilities. Probab. Theory Related Fields 83 (1989) 135–205. | MR 1012498 | Zbl 0692.60063

[13] D. A. Dawson and V. Vinogradov. Almost-sure path properties of (2,d,β)-superprocesses. Stochastic Process. Appl. 51 (1994) 221–258. | MR 1288290 | Zbl 0810.60028

[14] J.-F. Delmas. Path properties of superprocesses with a general branching mechanism. Ann. Appl. Probab. 27 (3) (1999) 1099–1134. | MR 1733142 | Zbl 0962.60033

[15] P. Donnelly and T. G. Kurtz. A countable representation of the Fleming–Viot measure-valued diffusion. Ann. Appl. Probab. 24 (2) (1996) 698–742. | MR 1404525 | Zbl 0869.60074

[16] P. Donnelly and T. G. Kurtz. Genealogical processes for Fleming–Viot models with selection and recombination. Ann. Appl. Probab. 9 (4) (1999) 1091–1148. | MR 1728556 | Zbl 0964.60075

[17] P. Donnelly and T. G. Kurtz. Particle representations for measure-valued population models. Ann. Appl. Probab. 27 (1) (1999) 166–205. | MR 1681126 | Zbl 0956.60081

[18] S. N. Ethier and T. G. Kurtz. Fleming–Viot processes in population genetics. SIAM J. Control Optim. 31 (2) (1993) 345–386. | MR 1205982 | Zbl 0774.60045

[19] A. Etheridge. Some Mathematical Models from Population Genetics. Lecture Notes in Mathematics 2012. Springer, Heidelberg, 2011. | MR 2759587 | Zbl 05819412

[20] K. J. Falconer. The Geometry of Fractal Sets. Cambridge Univ. Press, Cambridge, 1985. | MR 867284 | Zbl 0587.28004

[21] H. Liu and X. Zhou. Compact support property of the 𝛬-Fleming–Viot process with underlying Brownian motion. Electron. J. Probab. 17 (73) (2012) 1–20. | MR 2968680 | Zbl 1260.60098

[22] E. Perkins. Dawson–Watanabe superprocesses and measure-valued diffusions. In Lecture Notes in Mathematics 1781 132–318. Springer, Berlin, 1999. | MR 1915445 | Zbl 1020.60075

[23] J. Pitman. Coalescents with multiple collisions. Ann. Appl. Probab. 27 (4) (1999) 1870–1902. | MR 1742892 | Zbl 0963.60079

[24] M. Reimers. A new result on the support of the Fleming–Viot process, proved by nonstandard construction. Stochastics Stochastics Rep. 44 (3-4) (1993) 213–223. | MR 1277170 | Zbl 0804.60071

[25] J. G. Ruscher. Properties of superprocesses and interacting particle systems. Diploma thesis, Technische Univ. Berlin, 2009.

[26] S. Sagitov. The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 (4) (1999) 1116–1125. | MR 1742154 | Zbl 0962.92026

[27] J. Schweinsberg. A necessary and sufficient condition for the 𝛬-coalescent to come down from infinity. Electron. Commun. Probab. 5 (2000) 1–11. | EuDML 120746 | MR 1736720 | Zbl 0953.60072

[28] R. Tribe. Path properties of superprocesses. Ph.D. thesis, Univ. British Columbia, 1989. | MR 2638190 | Zbl 0867.60073