URL stable : http://www.numdam.org/item?id=AIHPB_2015__51_4_1290_0
Bibliographie
[1] Stopping times and tightness. Ann. Probab. 6 (1978) 335–340. MR 474446 | Zbl 0391.60007
.[2] Convergence of Probability Measures, 2nd edition. Wiley, New York, 1999. MR 1700749 | Zbl 0172.21201
.[3] Stochastic equations, flows and measure-valued processes. Ann. Probab. 40 (2012) 813–857. MR 2952093 | Zbl 1254.60088
and .[4] Weak convergence of sequences of semi-martingales with applications to multitype branching processes. Adv. in Appl. Probab. 18 (1986) 20–65. MR 827331 | Zbl 0595.60008
and .[5] The branching process with logistic growth. Ann. Probab. 15 (2005) 1506–1535. MR 2134113 | Zbl 1075.60112
.[6] Height and the total mass of the forest of genealogical trees of a large population with general competition. ESAIM Probab. Stat. 19 (2015) 172–193. MR 3386369
and .[7] Trees under attack: A Ray–Knight representation of Feller’s branching diffusion with logistic growth. Probab. Theory Related Fields 155 (2013) 583–619. MR 3034788 | Zbl 1266.60146
, and .[8] Self-avoiding random walks: A Brownian motion model with local time drift. Probab. Theory Related Fields 74 (1987) 271–287. MR 871255 | Zbl 0611.60052
, and .[9] From Brownian motion with a local time drift to Feller’s branching diffusion with logistic growth. Electron. Commun. Probab. 16 (2011) 720–731. MR 2861436 | Zbl 1245.60079
and .[10] A path-valued Markov process indexed by the ancestral mass. ALEA Lat. Am. J. Probab. Math. Stat. 12 (2015) 193–212. MR 3343482
and .[11] Continuous Martingales and Brownian Motion, 3d edition. Grundlehren der Mathematischen Wissenschaften 293. Springer, Berlin, 1999. MR 1725357 | Zbl 0917.60006
and .[12] Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften 233. Springer, Berlin, 1979. MR 532498 | Zbl 0426.60069
and .