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Quasi-minima

Mariano GIAQUINTA, Enrico GIUSTI

(University of Florence, Italy)

Ann. Inst. Henri Poincaré,

Vol. l, n° 2, 1984, p. 79 -107 . Analyse non linéaire

ABSTRACT. - The aim of this paper is to introduce the new notion cf
quasi-minima (Q-minima) of regular functionals in the calculus of variations.
The interest of this notion lies mainly in its unifying features ; it includes

among other things minima of variational integrals, solutions of elliptic
partial differential equations and systems, quasi-regular mappings.
We prove some regularity results for Q-minima in LP and C °~"-spaces

as well as qualitative features : Liouville property, weak maximum prin-
ciple, removal of singularities.

RESUME. - Le but de cet article est d’introduire la notion de quasi-
minima (Q-minima) de fonctionnelles régulières du calcul des variations.

L’interet principal de cette notion consiste en son caractere unificateur ;
elle contient, entre autres choses, les minima d’integrales variationnelles,
les solutions d’equations et de systemes d’equations aux derivees partielles
de type elliptique, les applications quasi-regulieres.
Nous démontrons des resultats de regularity pour les Q-minima dans

les espaces LP et et aussi des propriétés qualitatives comme la pro-
priete de Liouville, le principe du maximum faible, la suppression des
singularitcs.

1. INTRODUCTION

Direct methods in the Calculus of Variations have been one of the
principal tools in the theory of existence of minima of multiple integrals,
and of solutions to elliptic differential equations and inequalities.

It would be impossible to mention the multifarious applications of the
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80 M. GIAQUINTA ET E. GIUSTI

method; the essential idea being that we have a minimum whenever the
class of competing functions can be endowed with a topology such that
the functional in question is lower semicontinuous and there exists a

convergent minimizing sequence.
To be definite, let us consider the functional

in which Q is a bounded domain in u = (ut, u2, ..., is a function

mapping Q into [RN, N > 1, and f (x, u, p) is a Carathéodory function,
namely measurable in x for every (u, p) and continuous in (u, p) for almost
all x E Q.

It is well known that if in addition f is convex in p, then the functio-
nal (1.1) is lower semicontinuous in the weak topology for

every q > 1. In this case, the solvability of a minimum problem for the
functional (1.1) depends on the existence of a weakly convergent mini-
mizing sequence (or, what is the same, of a bounded minimizing sequence)
in The existence of such a sequence depends on growth conditions
on f and on the class of functions u competing for the minimum, and has
been established in a variety of situations.
When we pass from the problem of existence to that of the regularity

of minima, the main path goes through the Euler equation of iF, and the
regularity theorem of De Giorgi [4] ] for solutions of elliptic equations
with discontinuous coefficients.
De Giorgi’s result has been improved by various authors. It will be

outside our scope to discuss here the various contributions, and we refer
to the book by Ladyzenskaya and Ural’tseva [16]. The main technical
tool is here the introduction of the De Giorgi classes introduced in [4 ]
and then brought to the optimal generality in [16], and the proof of the
Holder-continuity of the functions in 

In a recent paper [12 ] we have proved that the same tools can be used
to prove the Holder-continuity of the minima of the functional ~ in a
direct way, and without passing through its Euler equation. This permits
to give regularity results when f is not differentiable or else perhaps
more interesting without assuming growth conditions on the derivatives
of f, i. e. when F is not Gateaux-differentiable. Additional regularity
results are proved in [13].
At the end of the same paper [12 ] we introduced the notion of quasi-

minima and we remarked that several results proved there for minima
could be extended to quasi-minima.

Before recalling the definition of Q-minimum, we specify further our
functional iF by requiring that the function f satisfy the inequalities
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81QUASI-MINIMA

where g is a given non-negative function, and m, y, b, ,u are non-negative
constants satisfying

shall limit ourselves to the case m  n ; however all the significant
results hold in the case m > n, with minor changes in the proofs.

DEFINITION 1.1. A function u E is a Q-minimum, Q > 1,
for the functional ~ if for every open set A c c Q and for every
v E with v = u outside A we have .

Since ~ is an integral functional, u is a Q-minimum for ~ if and only if
for every ~ E with supp $ = K c Q we have

The aim of this paper is twofold. On one side we shall discuss the notion
of quasi-minimum, showing that it includes among other things solutions
of elliptic equations and systems in divergence form, thus providing a
unified treatment of minima of functionals and solutions of elliptic partial
differential equations. On the other hand, we will show that a number
of results proved by several authors for solutions of elliptic equations
extend to quasi-minima.

This extension is not quite complete : some properties of elliptic equa-
tions-e. g. the comparison principle are false for Q-minima ; of others,
first of all the Harnack’s inequality, we have not been able to find a proof
in dimension n > 1. Nevertheless, we believe that the new notion of Q-mini-
mum may provide a better understanding of the behaviour of the solutions
of partial differential equations, and of the minima of functionals.

2. QUASI-MINIMA AND ELLIPTIC SYSTEMS

We begin our discussion with the remark that in many cases it is suffi-
cient to consider the simple functional

Actually, every quasi-minimum u E of the functional (1.1)
with conditions (1.2) and (1.3) is a quasi-minimum (with a different
constant) of (2 .1 ) where h = g + 1.

Vol. 1, n° 2-1984.



82 M. GIAQUINTA ET E. GIUSTI

To see that, let v E [RN) with S = supp (u - v) ci Q. We have

On the other hand

From the Sobolev imbedding theorem :

We remark now that we can suppose that

since otherwise we have trivially

From (2. 5) and (2.4) we get

Taking 8 > 0 small enough in (2.3), the result now follows from (2.2).
In particular, if b = g = 0 and m = 2, every quasi-minimum of the

functional ( 1.1 ) with -

is a quasi-minimum of the Dirichlet integral.
To the same integral we reduce in the case of solutions of linear elliptic

equations (and systems) in divergence form :

with measurable coefficients satisfying :

(as usual, summation over repeated indices is understood). Let u E 
be a solution of (2. 7), and let v E with S = supp (u - v) c Q.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



83QUASI-MINIMA

Multiplying (2.7) by u - v and integrating by parts we get

and therefore

so that u is a Q-minimum of the Dirichlet integral.
The same argument works for solutions of quasilinear elliptic systems

in divergence form :

We shall suppose that the system (2.9) is elliptic in the sense that

We will distinguish two cases, depending on the behaviour of B. The
simplest situation is that of non-natural or controlled growth conditions :

with

We have :

THEOREM 2 .1. Let u E be a weak solution of the system (2. 9) ;
with condition (2 .10) and (2 .11). Then u is a quasi-minimum of the func-
tional

with

Proof - Let v be a function in IRN) with S = supp (u - v) c Q.
Multiplying (2.9) by (u - v) and integrating by parts we get

Vol. 1, n° 2-1984.



84 M. GIAQUINTA ET E. GIUSTI

and therefore, using (2 .10) and (2 .11 ) :

all the integrals being taken on S.
Now:

and the result follows arguing as above. q. e. d.
More complex is the case of natural growth conditions. In this case

we consider bounded weak solutions of the system (2 . 9) :

with right-hand side B satisfying

where the constant a and the function may depend on M. We can also take
b = 0 in (2 .10) by allowing the functions f, g, and the constant L, to depend
on M.
We shall consider separately the case of a single equation (N = 1) and

of a system of equations (N > 1).

THEOREM 2 . 2. - Let u be a bounded weak solution of equation (2. 9)

Annales de l’Institut Henri Poincaré - Analyse non linéaire



85QUASI-MINIMA

(N = 1), and suppose that (2.10), (2.12) and {2.13) hold. Then u is a quasi-
minimum of the functional

with

Proof - Let v E with v ~ I  M and S = supp (u - v) c Q.
If we multiply both sides of (2.9) by § = (u - v) + where
a+ - max (a, 0), and we integrate by parts, we obtain

where all integrals are taken on S + - supp 4J c S and the coefficients A êl
and B are computed at (x, u, Du). Using (2.10) and (2.13) we get

Recalling that u - v ~  2M we easily conclude that

for some constant Q depending on M.
In a similar way, taking § = (v - we get S - )  S - )

and therefore

provided M.

If now w is a generic function setting v==min {M, 
we have v ( _ M and therefore (2 .15) holds. On the other hand Dv| ~ I Dw [
and hence

so that u is a Q-minimum for ~. q. e. d.
Let us consider now elliptic systems. In this case, theorem 2.2 cannot

hold without further assumptions. In fact, bounded solutions can be

singular even in dimension n = 2 and with m = 2 [7], while Q-minima
have first derivatives higher integrable, i. e. Du E for some r > 2

(see theorem 3.1 later) and therefore are Holder-continuous in dimension

Vol. 1, n" 2-1984.



86 M. GIAQUINTA ET E. GIUSTI

n = 2. Moreover, a simple modification of Frehse’s example [15 ] shows
that (2.16) below is necessary except perhaps for the factor 2.
We have

THEOREM 2.3. - Let u be a bounded solution of the system (2 . 9). Suppose
that (2.10), (2.12) and (2.13) hold, and moreover

Then u is a quasi-minimum for the functional (2 .14).

~’roof : - Let as usual v E with S = supp (u - v) c Q.
If I v [  M it is sufficient to integrate by parts the left-hand side of (2. 9)
after multiplication by (u - v). The term involving on the right-
hand side can be estimated using (2.16).
In general we set ,

We have w ~  M, and 2 ~ Dv ~ I therefore

’ ’ F _ ... _ .  . 

q. e. d.

The above results cover most of the cases of elliptic equations and systems
studied in the literature, with the obvious exception of those systems in
which the special structure of the coefficients enters in an essential way,
as for instance diagonal systems, coefficients depending only on I
and so on. It is clear from the above that all the peculiarities depending
on the structure or else on the continuity of the coefficients cannot be
preserved when passing to quasi-minima.
By consequence, all the results that we shall obtain for Q-minima hold

for solutions of elliptic systems (or equations) with discontinuous coeffi-
cients. This explains why most of the results of the next section are valid

- only in the scalar case (N = 1), but also why the results for the general
vector case (N > 1) are perhaps more subtle and interesting.

Before passing to the properties of quasi-minima, let us discuss some
additional examples.

a) variational inequalities with obstacles.

Let ~r E H 1 °m(S~), and let u be such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire



87QUASI-MINIMA

We use again the method of theorem 2.2 in order to show that
if supp (~~ - u) = S c S2 and v we have

, 

We want to drop now the condition r > For that, let w = max (v, t/J).
We have w > 03C8 and supp w ci S, so that (2.17) holds for w. On the other
hand |DwI ~ | Dv 1 + |D03C8 I and therefore u is a quasi-minimum of the
functional

b) Quasi-regular mappings.

We recall that a mapping -u : [Rn is called quasi-regular if there
exists a constant k such that for almost every x E Q

if in addition u is a homeomorphism, it is called quasi-conformal (see
e. g. [21 ] [9 ]).
We have .

THEOREM 2.4. - A quasi-regular mapping is a quasi-minimum of the
functional ,

Proofi - We remark that
I

for every § E IRn). Moreover, for every n x n matrices A and B
we have

where,

Taking A = Dv and B = D(u - v) we get

Vol. 1, n° 2-1984.



88 M. GIAQUINTA ET E. GIUSTI

Set now S = supp (u - v) integrating over S and taking into
. account (2.18), we get

and the conclusion follows from the standard inequality

c) Quasi-minima in one independent variable.

We shall consider here the case where Q is an interval in R, and u is a
quasi-minimum of the integral

It is true, in general, that it is sufficient to satisfy inequality (1.4) when
the support of § is connected. In our case that means that we can consider
only variations whose support is a subinterval [a, b ~ c S2. Moreover,
since the Dirichlet integral

is minimum when v’ is constant, we can conclude that u is a Q-minimum
of (2. 20) if and only if

for every interval [a, b] c Q, or, what is the same

where

It follows at once from (2 . 21 ) that a quasi-minimum u must be a monotone
function in Q ; to be definite we shall suppose that u is non-decreasing.
The inequality (2.22) is a reverse Holder inequality, with the integral

computed on the same set. This is a very strong inequality, and implies
in particular that u’ cannot have a zero of infinite order at a point xo,

Annales de l’Institut Henri Poincaré - Analyse non linéaire



89QUASI-MINIMA

without being identically zero near xo ( [1 D ], chap. 5, Proposition 1. 3).
If u E Coo this means that u must be either strictly increasing or constant.
This is actually true in general for u E H 1 ?2(~2). Let us suppose on the con-
trary that u = 0 for x  0 and u > 0 for x > 0, and let a  0  b.

We have from (2 . 22) :

Letting b -~ 0 we get a contradiction.
We have thus proved that if u(x) is a quasi-minimum for the integral (2 . 20)

then (i) u is strictly monotone and (it) u’ has no zeros of infinite order.
We remember that a non-negative function f has a zero of order > s

at xo if

The order of the zero is defined as the supremum of such s. The proof
of the proposition 1. 3 of [10 gives also a bound for the order of the zeros
of u’ in terms of the constant Q in (2.22).

In general, conditions (i) and (ii) are not sufficient to ensure that u is
a Q-minimum of (2.20). To see that, define

and let a  0  b. It is a matter of calculation to show that if we let a, b -~ 0
in such a way that a/b - 0 and 0 (for instance a=-b1+03C4

with 0  03C4  2(k - h) 2h + 1) the ratio

tends to + oo and therefore u cannot be a quasi-minimum of (2.20).
In the example the different behaviour of the derivative on the two sides

of the origin enters in an essential way. In fact we have
- 

’ 

PROPOSITION 2. 5. - Let u(x) be a strictly increasing function in a bounded
. 

interval [- L, L], such that u’ is bounded and essentially di, f’, f’erent from
zero for x ~ 0. Suppose furthermore that there exist positive constants
A, B, k and b such that

for  2b. Then u is a quasi-minimum for 

Vol. l, n° 2-1984.



90 M. GIAQUINTA ET E. GIUSTI

Proof - Let I = [a, b ] be any subinterval of [ - L, L ]. We split the proof
in three cases as follows

(1) ~ I I == ~ - ~ > 6. Since u is increasing there exists Bo > 0 such that
u(b) - u(a) > Bo. We have therefore

M being a bound for u’.

(2)  ~ ~ - ~). Here we use the hypothesis that u’ is bounded

away from zero far from the origin. We have

for some 81 > 0, and therefore

(3) I I x  2~ ~ . We can use here (2.24) getting

and hence the ratio (2.23) is bounded by some constant Q depending
only on k, A and B. q. e. d.

It is clear that the same method will work if u’ has a finite number of

zeros, and satisfies inequalities of the type of (2.24) near each of them.
. In particular this is the case if u is Coo and u’ has no zero of infinite order,
so that conditions (i) and (ii) are sufficient in this case.

Finally, in the one-dimensional case we can prove the Harnack’s

inequality:

PROPOSITION 2.6. - Let u be a non-negative Q-minimum for the func-

i nal 2 20 in SZ = 0 1 and let x E 03A9 and R  
1 

dist ( x ~03A9). Then(2.20) in Q = [0, 1 ], o e Q dist (xo, ~03A9). Then

Proof - Changing possibly u(t) into u(l - t) we can suppose that u is

Annales de l’Institut Henri Poincaré - Analyse non linéaire



91QUASI-MINIMA

increasing ; moreover we can assume that u(0) = 0. If 0 ~ a  b  1
we have

where we have used (2.22) in the last step.
If a and b are such that /32 = Q(l - a/b)  1 we get easily:

and therefore

In particular, taking (a, b) = (xo - R, xo + R) we get easily the conclu-
sion since dist (xo, ~S~)  xo.

d) Spherical quasi-minima.

We can define spherical quasi-minima u(x) by the requirement that for
every ball B c Q we have

where v is the harmonic function coinciding with u on 3B. Since such a v mini-
mizes the Dirichlet integral, the inequality (2. 25) holds for every function v
agreeing with u on 3B.
We have observed that in the case of one independent variable this

is equivalent to our original definition 1.1. On the other hand, when the
independent variables are two or more, this is not true anymore, as we
show by the following example.
We take a function u(x), homogeneous of degree f3 and smooth in

f~n - ~ 0 ~ . We suppose further that u has no stationary points, and that u
is not constant on the boundary of any ball. A function with these properties
is for instance

where x’ = ..., and 0  a  1. We shall prove that u(x)
satisfies (2.25) for some constant Q.

Vol. 1, n° 2-1984.



92 M. GIAQUINTA ET E. GIUSTI

We shall observe first that if v is harmonic in BR and v = u on 8BR we
have (see, e. g. [20 ])

It will be therefore sufficient to show that

for any ball BR = BR(xo) c Q.
We can reduce to R = 1 by setting xo = Ryo and x = R( yo + y) ;

taking into account the homogeneity of u and of its gradient the above
inequality becomes

Moreover, since |y - w| _ 2 it will be sufficient to show that

or, what is the same :

Let us call F( yo) the left hand-side of (2 . 27), and G( yo) the quantity
within brackets on the right-hand side. F and G are continuous functions
in (I~n, and G is strictly positive since u is not constant on aB1(yo).
The ratio F/G is therefore bounded on compact sets, and we have only
to estimate it for large 
We have for y  1:

From the last equation we get

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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whereas from the first

On the other hand

and therefore

We remark now that since Du is never zero we have

and therefore F/G _ c~ if [ is sufficiently large, thus proving (2.27).
The function u is therefore a spherical quasi-minimum for the Dirichlet

integral. On the other hand it is not a quasi-minimum, since it does not
have the properties stated in theorem 4.3 (maximum principle) or in
theorem 4.1 (local boundedness).
We remark that the requirement that u e Hl.2(O) implies that f3 > 1 - - ;

and therefore our u is bounded (and even Holder-continuous) if n = 2
and may be unbounded if n > 3. This is not a coincidence, as will be clear
from theorem 3 .1.

e) General growth conditions.

More generally, we can consider integrands f (x, u, p) satisfying instead
of (2.1) the condition

where /) and 03B8 are positive functions such that

with a  m* and

In this case, we reduce immediately to (2.1) setting

Vol. 1, n° 2-1984.
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with =~ ~ ~~(~). In this way we have

and therefore if u is a Q-minimum of the functional

the transformed function w is a Q-minimum of

where

satisfies

We note that no assumption has been made on the function except (2 . 29)
and cp > 0 in (0, + (0). In particular cp can have arbitrary growth, and
can be zero for t = 0.

In the vector case some complications arise from the fact that instead
of (2. 32) we have 

- --

Since

we can set as above

Let

Remarking that tl1’ == qJ - ~ we get

and therefore

In conclusion, we have
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