@article{AIHPC_1984__1_4_205_0, author = {Devys, Christophe and Morel, Jean-Michel and Witomski, P.}, title = {A homotopy method for solving an equation of the type $- \Delta u = F(u)$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {205--222}, publisher = {Gauthier-Villars}, volume = {1}, number = {4}, year = {1984}, zbl = {0569.65087}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1984__1_4_205_0/} }
TY - JOUR AU - Devys, Christophe AU - Morel, Jean-Michel AU - Witomski, P. TI - A homotopy method for solving an equation of the type $- \Delta u = F(u)$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 1984 SP - 205 EP - 222 VL - 1 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1984__1_4_205_0/ LA - en ID - AIHPC_1984__1_4_205_0 ER -
%0 Journal Article %A Devys, Christophe %A Morel, Jean-Michel %A Witomski, P. %T A homotopy method for solving an equation of the type $- \Delta u = F(u)$ %J Annales de l'I.H.P. Analyse non linéaire %D 1984 %P 205-222 %V 1 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPC_1984__1_4_205_0/ %G en %F AIHPC_1984__1_4_205_0
Devys, Christophe; Morel, Jean-Michel; Witomski, P. A homotopy method for solving an equation of the type $- \Delta u = F(u)$. Annales de l'I.H.P. Analyse non linéaire, Tome 1 (1984) no. 4, pp. 205-222. http://archive.numdam.org/item/AIHPC_1984__1_4_205_0/
[1] Transversal Mappings and Flows. W. A. Benjamin, Inc., 1967. | MR | Zbl
,[2] Sobolev Spaces. Academic Press, New York, 1975. | MR | Zbl
,[3] A numerical continuation method that works generically. University of Maryland, Dept. of Math., MD 77-9, JA, TR 77-9, 1977.
and ,[4] Finding zeros of maps: Homotopy methods that are constructive with probability one. Math. Comp., t. 32, 1978, p. 887-899. | MR | Zbl
, and ,[5] Homotopies for computation of fixed points on unbounded regions, Mathematical Programming, t. 3, n° 2, 1972, p. 225-237. | MR | Zbl
and ,[6] Perturbation theory for nonlinear operators. Springer Verlag, 1966. | MR | Zbl
,[7] A Method of Continuation for Calculating a Brouwer Fixed Point, in: Computing Fixed Points with Applications, S. Karamardian, ed., Academic Press, New York, 1977. | MR | Zbl
, and ,[8] Analysis, Madison-Wesley Publishing Company, 1968. | Zbl
,[9] An infinite dimensional version of Sard's theorem. American Journal of Math., t. 87, 1965, p. 861-866. | MR | Zbl
,[10] A convergent process of price adjustment and global Newton methods, J. Math. Econ., t. 3, p. 1-14. | MR | Zbl
,