A new degree for S 1 -invariant gradient mappings and applications
Annales de l'I.H.P. Analyse non linéaire, Tome 2 (1985) no. 5, pp. 329-370.
@article{AIHPC_1985__2_5_329_0,
     author = {Dancer, E. N.},
     title = {A new degree for $S^1$-invariant gradient mappings and applications},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {329--370},
     publisher = {Gauthier-Villars},
     volume = {2},
     number = {5},
     year = {1985},
     mrnumber = {817033},
     zbl = {0579.58022},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPC_1985__2_5_329_0/}
}
TY  - JOUR
AU  - Dancer, E. N.
TI  - A new degree for $S^1$-invariant gradient mappings and applications
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1985
SP  - 329
EP  - 370
VL  - 2
IS  - 5
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPC_1985__2_5_329_0/
LA  - en
ID  - AIHPC_1985__2_5_329_0
ER  - 
%0 Journal Article
%A Dancer, E. N.
%T A new degree for $S^1$-invariant gradient mappings and applications
%J Annales de l'I.H.P. Analyse non linéaire
%D 1985
%P 329-370
%V 2
%N 5
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPC_1985__2_5_329_0/
%G en
%F AIHPC_1985__2_5_329_0
Dancer, E. N. A new degree for $S^1$-invariant gradient mappings and applications. Annales de l'I.H.P. Analyse non linéaire, Tome 2 (1985) no. 5, pp. 329-370. http://archive.numdam.org/item/AIHPC_1985__2_5_329_0/

[1] R. Abraham and J. Robbins, Transversal mappings and flows, Reading, Benjamin, 1967. | MR | Zbl

[2] S. Agmon, Lectures on elliptic boundary-value problems, Princeton, Van Nostrand, 1965. | MR | Zbl

[3] J.C. Alexander and J. Yorke, Global bifurcation of periodic orbits, Amer. J. Math., t. 100, 1978, p. 263-292. | MR | Zbl

[4] H. Amann and E. Zehnder, Non-trivial solutions for a class of non-linear differential equations, Ann. Scuola Norm Sup Pisa, t. 7, 1980, p. 539-693. | Numdam | MR | Zbl

[5] M.S. Berger, Nonlinearity and functional analysis, New York, Academic Press, 1977. | MR | Zbl

[6] J. Bochnak and J. Siciak, Analytic functions in topological vector spaces, Studia Math., t. 39, 1971, p. 77-111. | MR | Zbl

[7] R. Bohme, Die Losung der Verzweignungsgleichugen für nichtlineare Eigenwert-probleme, Math. Z., t. 127, 1972, p. 105-126. | MR | Zbl

[8] G. Bredon, Introduction to compact transformation groups, New York, Academic Press, 1972. | MR | Zbl

[9] H. Brezis, Opérateurs maximaux monotones, Amsterdam, North Holland, 1973. | MR

[10] S. Chow and J. Mallet-Paret, The Fuller index and global bifurcation, J. Diff. Eqns., t. 29, 1978, p. 66-85. | MR | Zbl

[11] S.N. Chow, J. Mallet-Paret and J. Yorke, Global Hopf bifurcation from a multiple eigenvalue, Nonlinear Analysis, t. 2, 1978, p. 753-763. | MR | Zbl

[12] C. Conley, Isolated invariant sets and the Morse Index, CBMS regional conferences in mathematics, no. 38, Providence, Amer. Math. Soc., 1978. | MR | Zbl

[13] M. Crandall and P.H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Anal., t. 8, 1971, p. 321-340. | MR | Zbl

[14] E.N. Dancer, Bifurcation in real Banach space, Proc. London Math. Soc., t. 23, 1971, p. 699-734. | MR | Zbl

[15] E.N. Dancer, Global solution branches for positive mappings, Archives Rat. Mech. Anal., t. 52, 1973, p. 181-192. | MR | Zbl

[16] E.N. Dancer, The G-invariant implicit function theorem in infinite-dimensions, Proc. Royal Soc. Edinburgh, t. 92 A, 1982, p. 13-30. | MR | Zbl

[17] E.N. Dancer, An implicit function theorem with symmetries and its application to nonlinear eigenvalue problems, Bull. Austral. Math. Soc., t. 21, 1980, p. 81-91. | MR | Zbl

[18] E.N. Dancer, On the structure of solutions of an equation in catalysis theory when a parameter is large, J. Diff. Eqns., t. 39, 1980, p. 404-437. | MR | Zbl

[19] E.N. Dancer, On non-radially symmetric bifurcation, J. London Math. Soc., t. 20, 1979, p. 287-292. | Zbl

[20] E.N. Dancer, On the structure of solutions of nonlinear eigenvalue problems, Indiana Univ. Math. J., t. 23, 1974, p. 1069-1076. | MR | Zbl

[21] E.N. Dancer, Perturbation of zeros in the presence of symmetries, to appear in J. Austral. Math. Soc. | MR | Zbl

[22] E.N. Dancer, Remarks on S1-symmetries and a special degree for S1-invariant gradient mappings, submitted.

[23] E.N. Dancer, Degenerate critical points, homotopy indices and Morse inequalities, J. Reine Ang. Math., t. 350, 1984, p. 1-22. | MR | Zbl

[24] E. Fadell and R. Rabinowitz, Generalized cohomology theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math., t. 45, 1978, p. 139-174. | MR | Zbl

[25] I. Gokhberg, P. Lancaster and L. Rodman, Perturbation of H-self-adjoint matrices with applications to differential equations, Integral equations and operator theory, t. 5, 1982, p. 718-757. | MR | Zbl

[26] J. Ize, Bifurcation theory for Fredholm operators, Mem. Amer. Math. Soc., t. 174, 1976. | MR | Zbl

[27] T. Kato, Perturbation theory for linear operators, Berlin, Springer, 1966. | Zbl

[28] N. Lloyd, Degree theory, Cambridge, Cambridge University Press, 1978. | MR | Zbl

[29] J. Logan, Invariant variational principles, New York, Academic Press, 1977. | MR

[30] R. Magnus, A generalization of multiplicity and the problem of bifurcation, Proc. London Math. Soc., t. 32, 1976, p. 251-278. | MR | Zbl

[31] R. Narasimhan, Lectures on topics in analysis, Bombay, Tata Institute, 1965. | MR | Zbl

[32] R. Nussbaum, The fixed point index for locally condensing maps, Ann. Mat. Pura Appl., t. 89, 1971, p. 217-258. | MR | Zbl

[33] P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., t. 7, 1971, p. 487-513. | MR | Zbl

[34] P.H. Rabinowitz, A bifurcation theorem for potential operators, J. Funct. Anal., t. 25, 1977, p. 412-424. | MR | Zbl

[35] D. Sattinger, Group theoretic methods in bifurcation theory, Lecture notes in mathematics, no. 762, Berlin, Springer, 1979. | MR | Zbl

[36] C. Siegel and J. Moser, Lectures on celestial mechanics, Berlin, Springer-Verlag, 1971. | MR | Zbl

[37] M. Vainberg, Variational methods for the study of nonlinear equations, San Francisco, Holden-Day, 1964.

[38] G. Wasserman, Equivariant differential topology, Topology, t. 8, 1969, p. 127-150. | MR | Zbl

[39] P. Wolfe, Equilibrium states of an elastic conductor in a magnetic field: a paradigm of bifurcation theory, Trans. Amer. Math. Soc., t. 278, 1983, p. 377-388. | MR | Zbl

[40] P. Wolfe, Rotating states of an elastic conductor, preprint. | MR