@article{AIHPC_1986__3_3_229_0, author = {Moser, J\"urgen}, title = {Minimal solutions of variational problems on a torus}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {229--272}, publisher = {Gauthier-Villars}, volume = {3}, number = {3}, year = {1986}, mrnumber = {847308}, zbl = {0609.49029}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1986__3_3_229_0/} }
Moser, Jürgen. Minimal solutions of variational problems on a torus. Annales de l'I.H.P. Analyse non linéaire, Tome 3 (1986) no. 3, pp. 229-272. http://archive.numdam.org/item/AIHPC_1986__3_3_229_0/
[1] On Some Existence Theorems for Semi-linear Elliptic Equations, Ind. Univ. Math. Journal, t. 27, 1978, p. 779-790 (see esp. prop. 2 and its proof, p. 788-789. | MR | Zbl
, ,[2] The discrete Frenkel-Kantorova model and its extensions I. Exact results for the ground states, Physica, t. 8D, 1983, p. 381-422. | MR
, ,[3] Mather Sets for Twist Maps and Geodesic Tori. Preprint, Bonn, 1985. | MR
,[4] Sulla differenziabilità e l'analiticità degli integrali multipli regolari, Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Natur, (3), n° 3, 1957, p. 25-43. | MR | Zbl
,[5] Harnack Inequality for Quasi-Minima of Variational Integrals, Annales de l'Inst. H. Poincaré, Analyse Non-linéaire, t. 1, 1984, p. 295-308. | Numdam | MR | Zbl
, ,[6] Ueber die Regularität schwacher Lösungen von Variationsproblemen mit Hindernissen und Integralbedingungen, preprint No. 512, Sonderforschungsbereich 72, Universität Bonn, 1982.
,[7] Quasi-Minima, Ann. d'Inst. Henri Poincaré, Analyse non lin., t. 1, 1984, p. 79-107. | Numdam | MR | Zbl
, ,[8] On the regularity of the minima of variational integrals, Acta math., t. 148, 1982, p. 31-46. | MR | Zbl
, ,[9] Differentiability of Minima of Non-Differentiable Functionals, Inv. math., t. 72, 1983, p. 285-298. | MR | Zbl
, ,[10] Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. Math. Studies, t. 105, Princeton, N. J., 1983. | MR | Zbl
,[11] An Introduction to the Regularity Theory for Nonlinear Elliptic Systems, Lecture Notes at the ETH Zürich, May 1984.
,[12] Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, 1983. | MR | Zbl
and ,[13] Geodesics on a two-dimensional Riemannian manifold with periodic coefficients, Ann. Math., t. 33, 1932, p. 719-739. | MR | Zbl
,[14] Some remarks on Birkhoff and Mather twist theorems, Ergodic Theory and Dynamical Systems, t. 2, 1982, p. 185-194. | MR | Zbl
,[15] Linear and Quasilinear Elliptic Equations, Acad. Press, New York and London, 1968. | MR | Zbl
, ,[16] Existence of quasi-periodic orbits for twist homeomorphisms of the annulus, Topology, t. 21, 1982, p. 457-467. | MR | Zbl
,[17] Multiple Integrals in the Calculus of Variations, Springer-Verlag, 1966. | MR | Zbl
,[18] A fundamental class of geodesics on any closed surface of genus greater than one. Trans. Am. Math. Soc., t. 26, 1924, p. 25-60. | JFM | MR
,[19] On Harnack's Theorem for Elliptic Differential Equations, Comm. Pure Appl. Math., t. 14, 1961, p. 577-591. | MR | Zbl
[20] Monotone Twist Mappings and the Calculus of Variations, to appear in Dynamical Systems and Ergodic Theory, 1986. | MR | Zbl
,[21] Breakdown of stability, to appear in SIAM Review, 1986.
,[22] Variational principles for invariant tori and Cantori, A. I. P. Conference Proceedings No. 57, ed. M. Month, 1980, p. 1-17. | MR
,[23] A variational principle for invariant tori of fixed frequency, Journ. Phys. A., Math. Gen., t. 12, 1979, L 57-60. | MR | Zbl
,[24] Maximum Principles in Differential Equations, Prentice Hall, 1967. | MR | Zbl
, ,[25] On foliations of Rn+1 by minimal hypersurfaces, preprint from Indiana University, Oct. 1984, to appear in Comm. Math. Helv., 1986. | MR | Zbl
,[26] On Harnack Type Inequalities and their Application to Quasilinear Elliptic Equations. Comm. Pure Appl. Math., t. 20, 1967, p. 721-747. | MR | Zbl
,