A finiteness result in the free boundary value problem for minimal surfaces
Annales de l'I.H.P. Analyse non linéaire, Volume 3 (1986) no. 4, p. 331-343
@article{AIHPC_1986__3_4_331_0,
     author = {Tomi, Friedrich},
     title = {A finiteness result in the free boundary value problem for minimal surfaces},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Gauthier-Villars},
     volume = {3},
     number = {4},
     year = {1986},
     pages = {331-343},
     zbl = {0603.49028},
     mrnumber = {853386},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1986__3_4_331_0}
}
Tomi, Friedrich. A finiteness result in the free boundary value problem for minimal surfaces. Annales de l'I.H.P. Analyse non linéaire, Volume 3 (1986) no. 4, pp. 331-343. http://www.numdam.org/item/AIHPC_1986__3_4_331_0/

[1] P. Alexandroff, H. Hopf, Topologie. Erster Band., Springer, Berlin, 1935.

[2] W. Blaschke, Vorlesungen über Differentialgeometrie. I. Elementare Differential geometrie., Springer, Berlin, 1945. | Zbl 0063.00453

[3] R. Courant, Dirichlet's principle, conformal mapping and minimal surfaces. Interscience Publ., New York, 1950. | MR 36317 | Zbl 0040.34603

[4] S. Hildebrandt, Randwertprobleme für Flächen mit vorgeschriebener mittlerer

Krümmung und Anwendungen auf die Kapillaritätstheorie. II. Freie Ränder. Arch. Rat. Mech. Analysis, t. 39, 1970, p. 275-293. | MR 273524

[5] S. Hildebrandt, Ein einfacher Beweis für die Regularität der Lösungen gewisser zweidimensionaler Variationsprobleme unter freien Randbedingungen. Math. Ann., t. 194, 1971, p. 316-331. | MR 291927 | Zbl 0213.38404

[6] W. Jäger, Behavior of minimal surfaces with free boundaries. Comm. Pure Appl. Math., t. 23, 1970, p. 803-818. | MR 266067 | Zbl 0204.11601

[7] W.H. Meeks, S.T. Yau, Topology of three dimensional manifolds and the embedding problems in minimal surface theory. Ann. of Math., t. 112, 1980, p. 441-484. | MR 595203 | Zbl 0458.57007

[8] J.C.C. Nitsche, Vorlesungen über Minimalflächen. Springer, Berlin-Heidelberg- New York, 1975. | MR 448224 | Zbl 0319.53003

[9] H.W. Seifert, Threllfall, Lehrbuch der Topologie. Chelsea Publ. Co., New York.

[10] F. Tomi, On the local uniqueness of the problem of least area. Archive Rat. Mech. Analysis, t. 52, 1973, p. 312-318. | MR 346639 | Zbl 0277.49016