@article{AIHPC_1987__4_1_1_0, author = {Foias, C. and Saut, J. C.}, title = {Linearization and normal form of the {Navier-Stokes} equations with potential forces}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1--47}, publisher = {Gauthier-Villars}, volume = {4}, number = {1}, year = {1987}, mrnumber = {877990}, zbl = {0635.35075}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1987__4_1_1_0/} }
TY - JOUR AU - Foias, C. AU - Saut, J. C. TI - Linearization and normal form of the Navier-Stokes equations with potential forces JO - Annales de l'I.H.P. Analyse non linéaire PY - 1987 SP - 1 EP - 47 VL - 4 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1987__4_1_1_0/ LA - en ID - AIHPC_1987__4_1_1_0 ER -
%0 Journal Article %A Foias, C. %A Saut, J. C. %T Linearization and normal form of the Navier-Stokes equations with potential forces %J Annales de l'I.H.P. Analyse non linéaire %D 1987 %P 1-47 %V 4 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPC_1987__4_1_1_0/ %G en %F AIHPC_1987__4_1_1_0
Foias, C.; Saut, J. C. Linearization and normal form of the Navier-Stokes equations with potential forces. Annales de l'I.H.P. Analyse non linéaire, Tome 4 (1987) no. 1, pp. 1-47. http://archive.numdam.org/item/AIHPC_1987__4_1_1_0/
[1] Geometrical methods in the theory of ordinary differential equations, Springer-Verlag. New York, 1983. | MR | Zbl
,[2] Integrability of nonlinear differential equations via functional analysis, Proc. Symp. Pure Math., t. 45, 1986, Part I, p. 117- 123. | MR | Zbl
, , ,[3] Variétés différentiables et analytiques, Fascicule de résultats, §1-7, Hermann, Paris, 1967. | MR | Zbl
,[4] Su un problema al contorno relativo al sistema di equazione di Stokes,Rend. Mat. Sem. Univ. Padova, t. 31, 1961, p. 308-340. | Numdam | MR | Zbl
,[5] Global Lyapunov exponents, Kaplan Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations, Comm. Pure Appl. Math., t. XXXVII, 1985, p. 1-28. | MR | Zbl
, ,[6] Solutions statistiques des équations de Navier-Stokes, Cours au Collège de France, 1974.
,[7] Asymptotic behavior, as t → + ∞ of solutions of Navier -Stokes equations and nonlinear spectral manifolds, Indiana Univ. Math. J., t. 33, 3, 1984, p. 459-471. | MR | Zbl
, ,[8] On the smoothness of the nonlinear spectral manifolds of Navier -Stokes equations, Indiana Univ. Math. J., t. 33, 6, 1984, p. 911-926. | MR | Zbl
, ,[9] Transformation fonctionnelle linéarisant les équations de Navier- Stokes, C. R. Acad. Sci. Paris, Série I, Math., t. 295, 1982, p. 325-327. | MR | Zbl
, ,[10] Remarks on the spectrum of some self-adjoint operators, in preparation.
, ,[11] Korteweg de Vries equations, VI: Methods for exact solution, Comm. Pure Appl. Math., t. 27, 1974, p. 97-133. | MR | Zbl
, , , ,[12] Long time behavior of solutions of abstract inequalities. Application to thermohydraulic and M. H. D. equations. J. Diff. Eq., t. 61, 2, 1986, p. 268-294. | MR | Zbl
,[13] Remarques à propos du comportement lorsque t → ∞, des solutions des équations de Navier-Stokes associées à une force nulle, Bull. Soc. Math. France, t. 111, 1983, p. 151-180. | Numdam | MR | Zbl
,[14] The partial differential equation ut + uux = μuxx, Comm. Pure Appl. Math., t. 3, 1950, p. 201-230. | Zbl
,[15] Remarques sur l'unicité de la solution stationnaire d'une équation de type Navier-Stokes, Revue Roumaine Math. Pures Appl., t. 21, 1976, p. 1071-1075. | MR | Zbl
,[16] Complete integrability of the nonlinear Schrödinger equation, Soviet Math. Dokl., t. 17, 2, 1976, p. 398-402. | MR | Zbl
,[17] On the complete integrability of the nonlinear Schrödinger equation, Funct. Anal. and Appl., t. 10, 3, 1976, p. 209-220. | MR | Zbl
,[18] Invariant asymptotically stable tori of the perturbed KdV equation, Russian Math. Surveys, t. 35, 5, 1980, p. 139-207. | MR | Zbl
,[19] The soliton: a new concept in applied science, Proc. IEEE, t. 61, 1973, p. 1443-1483. | MR
, , ,[20] On general boundary value problems for elliptic systems in the sense of Douglas-Nirenberg, I, Izv. Akad. Nauk SSSR, Ser. Mat., t. 28, 1964, p. 665- 706. | MR | Zbl
,[21] Navier-Stokes equations. Theory and numerical analysis, North-Holland, Amsterdam, 1979. | Zbl
,[22] Navier-Stokes equations and nonlinear functional analysis, NSF/CMBS Regional Conferences Series in Applied Mathematics, SIAM, Philadelphia, 1983. | MR | Zbl
,[23] Linear and nonlinear waves, John Wiley, New York, 1974. | MR | Zbl
,[24] Stationnary flows of incompressible viscous fluids, Math. Sborn., t. 53, 1961, p. 393-428.
, ,[25] Siegel's linearization theorem in infinite dimension, Manuscripta Math., t. 23, 1978, p. 363-371. | MR | Zbl
,[26] Thèse Paris, 1879; reprinted in Œuvres de Henri Poincaré, Vol. I, Gauthier-Villars, Paris, 1928.
,[27] Solutions d'un système d'équations différentielles dans le voisinage des valeurs singulières, Bull. Soc. Math. France, t. 40, 1912, p. 324-383. | JFM | Numdam | MR
,